Solve for x
x=-\frac{5}{6}\approx -0.833333333
Graph
Share
Copied to clipboard
x^{2}-4+3x^{2}=\left(2x+1\right)^{2}+2x
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
4x^{2}-4=\left(2x+1\right)^{2}+2x
Combine x^{2} and 3x^{2} to get 4x^{2}.
4x^{2}-4=4x^{2}+4x+1+2x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}-4=4x^{2}+6x+1
Combine 4x and 2x to get 6x.
4x^{2}-4-4x^{2}=6x+1
Subtract 4x^{2} from both sides.
-4=6x+1
Combine 4x^{2} and -4x^{2} to get 0.
6x+1=-4
Swap sides so that all variable terms are on the left hand side.
6x=-4-1
Subtract 1 from both sides.
6x=-5
Subtract 1 from -4 to get -5.
x=\frac{-5}{6}
Divide both sides by 6.
x=-\frac{5}{6}
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}