Solve for x
x=-3
x=3
Graph
Share
Copied to clipboard
x^{2}+5x+6=5\left(x+3\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
x^{2}+5x+6=5x+15
Use the distributive property to multiply 5 by x+3.
x^{2}+5x+6-5x=15
Subtract 5x from both sides.
x^{2}+6=15
Combine 5x and -5x to get 0.
x^{2}=15-6
Subtract 6 from both sides.
x^{2}=9
Subtract 6 from 15 to get 9.
x=3 x=-3
Take the square root of both sides of the equation.
x^{2}+5x+6=5\left(x+3\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
x^{2}+5x+6=5x+15
Use the distributive property to multiply 5 by x+3.
x^{2}+5x+6-5x=15
Subtract 5x from both sides.
x^{2}+6=15
Combine 5x and -5x to get 0.
x^{2}+6-15=0
Subtract 15 from both sides.
x^{2}-9=0
Subtract 15 from 6 to get -9.
x=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-9\right)}}{2}
Square 0.
x=\frac{0±\sqrt{36}}{2}
Multiply -4 times -9.
x=\frac{0±6}{2}
Take the square root of 36.
x=3
Now solve the equation x=\frac{0±6}{2} when ± is plus. Divide 6 by 2.
x=-3
Now solve the equation x=\frac{0±6}{2} when ± is minus. Divide -6 by 2.
x=3 x=-3
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}