Solve for x
x=-\frac{2y^{2}-24y-9}{\left(y-6\right)^{2}}
y\neq 6
Solve for y (complex solution)
y=6+9\left(x+2\right)^{-\frac{1}{2}}
y=6-9\left(x+2\right)^{-\frac{1}{2}}\text{, }x\neq -2
Solve for y
y=6+\frac{9}{\sqrt{x+2}}
y=6-\frac{9}{\sqrt{x+2}}\text{, }x>-2
Graph
Share
Copied to clipboard
\left(x+2\right)\left(y^{2}-12y+36\right)=81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-6\right)^{2}.
xy^{2}-12xy+36x+2y^{2}-24y+72=81
Use the distributive property to multiply x+2 by y^{2}-12y+36.
xy^{2}-12xy+36x-24y+72=81-2y^{2}
Subtract 2y^{2} from both sides.
xy^{2}-12xy+36x+72=81-2y^{2}+24y
Add 24y to both sides.
xy^{2}-12xy+36x=81-2y^{2}+24y-72
Subtract 72 from both sides.
xy^{2}-12xy+36x=9-2y^{2}+24y
Subtract 72 from 81 to get 9.
\left(y^{2}-12y+36\right)x=9-2y^{2}+24y
Combine all terms containing x.
\left(y^{2}-12y+36\right)x=9+24y-2y^{2}
The equation is in standard form.
\frac{\left(y^{2}-12y+36\right)x}{y^{2}-12y+36}=\frac{9+24y-2y^{2}}{y^{2}-12y+36}
Divide both sides by y^{2}-12y+36.
x=\frac{9+24y-2y^{2}}{y^{2}-12y+36}
Dividing by y^{2}-12y+36 undoes the multiplication by y^{2}-12y+36.
x=\frac{9+24y-2y^{2}}{\left(y-6\right)^{2}}
Divide 9-2y^{2}+24y by y^{2}-12y+36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}