Solve for x
x=-2
Graph
Share
Copied to clipboard
x^{3}+6x^{2}+12x+8-x\left(x-3\right)\left(x+3\right)=-16+6\left(x+1\right)^{2}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+2\right)^{3}.
x^{3}+6x^{2}+12x+8-\left(x^{2}-3x\right)\left(x+3\right)=-16+6\left(x+1\right)^{2}
Use the distributive property to multiply x by x-3.
x^{3}+6x^{2}+12x+8-\left(x^{3}-9x\right)=-16+6\left(x+1\right)^{2}
Use the distributive property to multiply x^{2}-3x by x+3 and combine like terms.
x^{3}+6x^{2}+12x+8-x^{3}+9x=-16+6\left(x+1\right)^{2}
To find the opposite of x^{3}-9x, find the opposite of each term.
6x^{2}+12x+8+9x=-16+6\left(x+1\right)^{2}
Combine x^{3} and -x^{3} to get 0.
6x^{2}+21x+8=-16+6\left(x+1\right)^{2}
Combine 12x and 9x to get 21x.
6x^{2}+21x+8=-16+6\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
6x^{2}+21x+8=-16+6x^{2}+12x+6
Use the distributive property to multiply 6 by x^{2}+2x+1.
6x^{2}+21x+8=-10+6x^{2}+12x
Add -16 and 6 to get -10.
6x^{2}+21x+8-6x^{2}=-10+12x
Subtract 6x^{2} from both sides.
21x+8=-10+12x
Combine 6x^{2} and -6x^{2} to get 0.
21x+8-12x=-10
Subtract 12x from both sides.
9x+8=-10
Combine 21x and -12x to get 9x.
9x=-10-8
Subtract 8 from both sides.
9x=-18
Subtract 8 from -10 to get -18.
x=\frac{-18}{9}
Divide both sides by 9.
x=-2
Divide -18 by 9 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}