( x + 2 ) ^ { 2 } = x \cdot ( x + 4,9 ) + 9
Solve for x
x=-\frac{50}{9}\approx -5,555555556
Graph
Share
Copied to clipboard
x^{2}+4x+4=x\left(x+4,9\right)+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4=x^{2}+4,9x+9
Use the distributive property to multiply x by x+4,9.
x^{2}+4x+4-x^{2}=4,9x+9
Subtract x^{2} from both sides.
4x+4=4,9x+9
Combine x^{2} and -x^{2} to get 0.
4x+4-4,9x=9
Subtract 4,9x from both sides.
-0,9x+4=9
Combine 4x and -4,9x to get -0,9x.
-0,9x=9-4
Subtract 4 from both sides.
-0,9x=5
Subtract 4 from 9 to get 5.
x=\frac{5}{-0,9}
Divide both sides by -0,9.
x=\frac{50}{-9}
Expand \frac{5}{-0,9} by multiplying both numerator and the denominator by 10.
x=-\frac{50}{9}
Fraction \frac{50}{-9} can be rewritten as -\frac{50}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}