Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x+4=2x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4-2x^{2}=0
Subtract 2x^{2} from both sides.
-x^{2}+4x+4=0
Combine x^{2} and -2x^{2} to get -x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16+16}}{2\left(-1\right)}
Multiply 4 times 4.
x=\frac{-4±\sqrt{32}}{2\left(-1\right)}
Add 16 to 16.
x=\frac{-4±4\sqrt{2}}{2\left(-1\right)}
Take the square root of 32.
x=\frac{-4±4\sqrt{2}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{2}-4}{-2}
Now solve the equation x=\frac{-4±4\sqrt{2}}{-2} when ± is plus. Add -4 to 4\sqrt{2}.
x=2-2\sqrt{2}
Divide -4+4\sqrt{2} by -2.
x=\frac{-4\sqrt{2}-4}{-2}
Now solve the equation x=\frac{-4±4\sqrt{2}}{-2} when ± is minus. Subtract 4\sqrt{2} from -4.
x=2\sqrt{2}+2
Divide -4-4\sqrt{2} by -2.
x=2-2\sqrt{2} x=2\sqrt{2}+2
The equation is now solved.
x^{2}+4x+4=2x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4-2x^{2}=0
Subtract 2x^{2} from both sides.
-x^{2}+4x+4=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+4x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}+4x}{-1}=-\frac{4}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=-\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=-\frac{4}{-1}
Divide 4 by -1.
x^{2}-4x=4
Divide -4 by -1.
x^{2}-4x+\left(-2\right)^{2}=4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=4+4
Square -2.
x^{2}-4x+4=8
Add 4 to 4.
\left(x-2\right)^{2}=8
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
x-2=2\sqrt{2} x-2=-2\sqrt{2}
Simplify.
x=2\sqrt{2}+2 x=2-2\sqrt{2}
Add 2 to both sides of the equation.