Solve for x
x=\sqrt{3}+1\approx 2.732050808
x=1-\sqrt{3}\approx -0.732050808
Graph
Share
Copied to clipboard
x^{2}+4x+4+x^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=\left(2x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x+4=2^{2}x^{2}
Expand \left(2x\right)^{2}.
2x^{2}+4x+4=4x^{2}
Calculate 2 to the power of 2 and get 4.
2x^{2}+4x+4-4x^{2}=0
Subtract 4x^{2} from both sides.
-2x^{2}+4x+4=0
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 4}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\times 4}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16+32}}{2\left(-2\right)}
Multiply 8 times 4.
x=\frac{-4±\sqrt{48}}{2\left(-2\right)}
Add 16 to 32.
x=\frac{-4±4\sqrt{3}}{2\left(-2\right)}
Take the square root of 48.
x=\frac{-4±4\sqrt{3}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{3}-4}{-4}
Now solve the equation x=\frac{-4±4\sqrt{3}}{-4} when ± is plus. Add -4 to 4\sqrt{3}.
x=1-\sqrt{3}
Divide -4+4\sqrt{3} by -4.
x=\frac{-4\sqrt{3}-4}{-4}
Now solve the equation x=\frac{-4±4\sqrt{3}}{-4} when ± is minus. Subtract 4\sqrt{3} from -4.
x=\sqrt{3}+1
Divide -4-4\sqrt{3} by -4.
x=1-\sqrt{3} x=\sqrt{3}+1
The equation is now solved.
x^{2}+4x+4+x^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=\left(2x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x+4=2^{2}x^{2}
Expand \left(2x\right)^{2}.
2x^{2}+4x+4=4x^{2}
Calculate 2 to the power of 2 and get 4.
2x^{2}+4x+4-4x^{2}=0
Subtract 4x^{2} from both sides.
-2x^{2}+4x+4=0
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}+4x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{-2x^{2}+4x}{-2}=-\frac{4}{-2}
Divide both sides by -2.
x^{2}+\frac{4}{-2}x=-\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-2x=-\frac{4}{-2}
Divide 4 by -2.
x^{2}-2x=2
Divide -4 by -2.
x^{2}-2x+1=2+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=3
Add 2 to 1.
\left(x-1\right)^{2}=3
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
x-1=\sqrt{3} x-1=-\sqrt{3}
Simplify.
x=\sqrt{3}+1 x=1-\sqrt{3}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}