Solve for x
x=-3
x=1
Graph
Share
Copied to clipboard
x^{2}+4x+4+x^{2}=\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=\left(\sqrt{10}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x+4=10
The square of \sqrt{10} is 10.
2x^{2}+4x+4-10=0
Subtract 10 from both sides.
2x^{2}+4x-6=0
Subtract 10 from 4 to get -6.
x^{2}+2x-3=0
Divide both sides by 2.
a+b=2 ab=1\left(-3\right)=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=-1 b=3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(x^{2}-x\right)+\left(3x-3\right)
Rewrite x^{2}+2x-3 as \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Factor out x in the first and 3 in the second group.
\left(x-1\right)\left(x+3\right)
Factor out common term x-1 by using distributive property.
x=1 x=-3
To find equation solutions, solve x-1=0 and x+3=0.
x^{2}+4x+4+x^{2}=\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=\left(\sqrt{10}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x+4=10
The square of \sqrt{10} is 10.
2x^{2}+4x+4-10=0
Subtract 10 from both sides.
2x^{2}+4x-6=0
Subtract 10 from 4 to get -6.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-6\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-6\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+48}}{2\times 2}
Multiply -8 times -6.
x=\frac{-4±\sqrt{64}}{2\times 2}
Add 16 to 48.
x=\frac{-4±8}{2\times 2}
Take the square root of 64.
x=\frac{-4±8}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{-4±8}{4} when ± is plus. Add -4 to 8.
x=1
Divide 4 by 4.
x=-\frac{12}{4}
Now solve the equation x=\frac{-4±8}{4} when ± is minus. Subtract 8 from -4.
x=-3
Divide -12 by 4.
x=1 x=-3
The equation is now solved.
x^{2}+4x+4+x^{2}=\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=\left(\sqrt{10}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x+4=10
The square of \sqrt{10} is 10.
2x^{2}+4x=10-4
Subtract 4 from both sides.
2x^{2}+4x=6
Subtract 4 from 10 to get 6.
\frac{2x^{2}+4x}{2}=\frac{6}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{6}{2}
Divide 4 by 2.
x^{2}+2x=3
Divide 6 by 2.
x^{2}+2x+1^{2}=3+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=3+1
Square 1.
x^{2}+2x+1=4
Add 3 to 1.
\left(x+1\right)^{2}=4
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+1=2 x+1=-2
Simplify.
x=1 x=-3
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}