Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x+4+\left(x+4\right)^{2}=8x+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4+x^{2}+8x+16=8x+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
2x^{2}+4x+4+8x+16=8x+2
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12x+4+16=8x+2
Combine 4x and 8x to get 12x.
2x^{2}+12x+20=8x+2
Add 4 and 16 to get 20.
2x^{2}+12x+20-8x=2
Subtract 8x from both sides.
2x^{2}+4x+20=2
Combine 12x and -8x to get 4x.
2x^{2}+4x+20-2=0
Subtract 2 from both sides.
2x^{2}+4x+18=0
Subtract 2 from 20 to get 18.
x=\frac{-4±\sqrt{4^{2}-4\times 2\times 18}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\times 18}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\times 18}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16-144}}{2\times 2}
Multiply -8 times 18.
x=\frac{-4±\sqrt{-128}}{2\times 2}
Add 16 to -144.
x=\frac{-4±8\sqrt{2}i}{2\times 2}
Take the square root of -128.
x=\frac{-4±8\sqrt{2}i}{4}
Multiply 2 times 2.
x=\frac{-4+2\times 2^{\frac{5}{2}}i}{4}
Now solve the equation x=\frac{-4±8\sqrt{2}i}{4} when ± is plus. Add -4 to 8i\sqrt{2}.
x=-1+2\sqrt{2}i
Divide -4+2i\times 2^{\frac{5}{2}} by 4.
x=\frac{-2\times 2^{\frac{5}{2}}i-4}{4}
Now solve the equation x=\frac{-4±8\sqrt{2}i}{4} when ± is minus. Subtract 8i\sqrt{2} from -4.
x=-2\sqrt{2}i-1
Divide -4-2i\times 2^{\frac{5}{2}} by 4.
x=-1+2\sqrt{2}i x=-2\sqrt{2}i-1
The equation is now solved.
x^{2}+4x+4+\left(x+4\right)^{2}=8x+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4+x^{2}+8x+16=8x+2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
2x^{2}+4x+4+8x+16=8x+2
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12x+4+16=8x+2
Combine 4x and 8x to get 12x.
2x^{2}+12x+20=8x+2
Add 4 and 16 to get 20.
2x^{2}+12x+20-8x=2
Subtract 8x from both sides.
2x^{2}+4x+20=2
Combine 12x and -8x to get 4x.
2x^{2}+4x=2-20
Subtract 20 from both sides.
2x^{2}+4x=-18
Subtract 20 from 2 to get -18.
\frac{2x^{2}+4x}{2}=-\frac{18}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=-\frac{18}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=-\frac{18}{2}
Divide 4 by 2.
x^{2}+2x=-9
Divide -18 by 2.
x^{2}+2x+1^{2}=-9+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-9+1
Square 1.
x^{2}+2x+1=-8
Add -9 to 1.
\left(x+1\right)^{2}=-8
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-8}
Take the square root of both sides of the equation.
x+1=2\sqrt{2}i x+1=-2\sqrt{2}i
Simplify.
x=-1+2\sqrt{2}i x=-2\sqrt{2}i-1
Subtract 1 from both sides of the equation.