Solve for x (complex solution)
x=-\sqrt{33}i-2\approx -2-5.744562647i
x=-2+\sqrt{33}i\approx -2+5.744562647i
Graph
Share
Copied to clipboard
\left(x+2\right)^{2}=16-49
Subtracting 49 from itself leaves 0.
\left(x+2\right)^{2}=-33
Subtract 49 from 16.
x+2=\sqrt{33}i x+2=-\sqrt{33}i
Take the square root of both sides of the equation.
x+2-2=\sqrt{33}i-2 x+2-2=-\sqrt{33}i-2
Subtract 2 from both sides of the equation.
x=\sqrt{33}i-2 x=-\sqrt{33}i-2
Subtracting 2 from itself leaves 0.
x=-2+\sqrt{33}i
Subtract 2 from i\sqrt{33}.
x=-\sqrt{33}i-2
Subtract 2 from -i\sqrt{33}.
x=-2+\sqrt{33}i x=-\sqrt{33}i-2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}