Solve for x
x=13
x=-37
Graph
Share
Copied to clipboard
x^{2}+24x+144=625
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+12\right)^{2}.
x^{2}+24x+144-625=0
Subtract 625 from both sides.
x^{2}+24x-481=0
Subtract 625 from 144 to get -481.
a+b=24 ab=-481
To solve the equation, factor x^{2}+24x-481 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,481 -13,37
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -481.
-1+481=480 -13+37=24
Calculate the sum for each pair.
a=-13 b=37
The solution is the pair that gives sum 24.
\left(x-13\right)\left(x+37\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=13 x=-37
To find equation solutions, solve x-13=0 and x+37=0.
x^{2}+24x+144=625
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+12\right)^{2}.
x^{2}+24x+144-625=0
Subtract 625 from both sides.
x^{2}+24x-481=0
Subtract 625 from 144 to get -481.
a+b=24 ab=1\left(-481\right)=-481
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-481. To find a and b, set up a system to be solved.
-1,481 -13,37
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -481.
-1+481=480 -13+37=24
Calculate the sum for each pair.
a=-13 b=37
The solution is the pair that gives sum 24.
\left(x^{2}-13x\right)+\left(37x-481\right)
Rewrite x^{2}+24x-481 as \left(x^{2}-13x\right)+\left(37x-481\right).
x\left(x-13\right)+37\left(x-13\right)
Factor out x in the first and 37 in the second group.
\left(x-13\right)\left(x+37\right)
Factor out common term x-13 by using distributive property.
x=13 x=-37
To find equation solutions, solve x-13=0 and x+37=0.
x^{2}+24x+144=625
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+12\right)^{2}.
x^{2}+24x+144-625=0
Subtract 625 from both sides.
x^{2}+24x-481=0
Subtract 625 from 144 to get -481.
x=\frac{-24±\sqrt{24^{2}-4\left(-481\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 24 for b, and -481 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-481\right)}}{2}
Square 24.
x=\frac{-24±\sqrt{576+1924}}{2}
Multiply -4 times -481.
x=\frac{-24±\sqrt{2500}}{2}
Add 576 to 1924.
x=\frac{-24±50}{2}
Take the square root of 2500.
x=\frac{26}{2}
Now solve the equation x=\frac{-24±50}{2} when ± is plus. Add -24 to 50.
x=13
Divide 26 by 2.
x=-\frac{74}{2}
Now solve the equation x=\frac{-24±50}{2} when ± is minus. Subtract 50 from -24.
x=-37
Divide -74 by 2.
x=13 x=-37
The equation is now solved.
\sqrt{\left(x+12\right)^{2}}=\sqrt{625}
Take the square root of both sides of the equation.
x+12=25 x+12=-25
Simplify.
x=13 x=-37
Subtract 12 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}