Solve for x
x=20\sqrt{65}+80\approx 241.245154966
x=80-20\sqrt{65}\approx -81.245154966
Graph
Share
Copied to clipboard
800x-5x^{2}+130000=32000
Use the distributive property to multiply x+100 by 1300-5x and combine like terms.
800x-5x^{2}+130000-32000=0
Subtract 32000 from both sides.
800x-5x^{2}+98000=0
Subtract 32000 from 130000 to get 98000.
-5x^{2}+800x+98000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-800±\sqrt{800^{2}-4\left(-5\right)\times 98000}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 800 for b, and 98000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-800±\sqrt{640000-4\left(-5\right)\times 98000}}{2\left(-5\right)}
Square 800.
x=\frac{-800±\sqrt{640000+20\times 98000}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-800±\sqrt{640000+1960000}}{2\left(-5\right)}
Multiply 20 times 98000.
x=\frac{-800±\sqrt{2600000}}{2\left(-5\right)}
Add 640000 to 1960000.
x=\frac{-800±200\sqrt{65}}{2\left(-5\right)}
Take the square root of 2600000.
x=\frac{-800±200\sqrt{65}}{-10}
Multiply 2 times -5.
x=\frac{200\sqrt{65}-800}{-10}
Now solve the equation x=\frac{-800±200\sqrt{65}}{-10} when ± is plus. Add -800 to 200\sqrt{65}.
x=80-20\sqrt{65}
Divide -800+200\sqrt{65} by -10.
x=\frac{-200\sqrt{65}-800}{-10}
Now solve the equation x=\frac{-800±200\sqrt{65}}{-10} when ± is minus. Subtract 200\sqrt{65} from -800.
x=20\sqrt{65}+80
Divide -800-200\sqrt{65} by -10.
x=80-20\sqrt{65} x=20\sqrt{65}+80
The equation is now solved.
800x-5x^{2}+130000=32000
Use the distributive property to multiply x+100 by 1300-5x and combine like terms.
800x-5x^{2}=32000-130000
Subtract 130000 from both sides.
800x-5x^{2}=-98000
Subtract 130000 from 32000 to get -98000.
-5x^{2}+800x=-98000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+800x}{-5}=-\frac{98000}{-5}
Divide both sides by -5.
x^{2}+\frac{800}{-5}x=-\frac{98000}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-160x=-\frac{98000}{-5}
Divide 800 by -5.
x^{2}-160x=19600
Divide -98000 by -5.
x^{2}-160x+\left(-80\right)^{2}=19600+\left(-80\right)^{2}
Divide -160, the coefficient of the x term, by 2 to get -80. Then add the square of -80 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-160x+6400=19600+6400
Square -80.
x^{2}-160x+6400=26000
Add 19600 to 6400.
\left(x-80\right)^{2}=26000
Factor x^{2}-160x+6400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-80\right)^{2}}=\sqrt{26000}
Take the square root of both sides of the equation.
x-80=20\sqrt{65} x-80=-20\sqrt{65}
Simplify.
x=20\sqrt{65}+80 x=80-20\sqrt{65}
Add 80 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}