Solve for x
x=0
x=-3
Graph
Share
Copied to clipboard
x^{2}+3x+2.25=2.25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1.5\right)^{2}.
x^{2}+3x+2.25-2.25=0
Subtract 2.25 from both sides.
x^{2}+3x=0
Subtract 2.25 from 2.25 to get 0.
x\left(x+3\right)=0
Factor out x.
x=0 x=-3
To find equation solutions, solve x=0 and x+3=0.
x^{2}+3x+2.25=2.25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1.5\right)^{2}.
x^{2}+3x+2.25-2.25=0
Subtract 2.25 from both sides.
x^{2}+3x=0
Subtract 2.25 from 2.25 to get 0.
x=\frac{-3±\sqrt{3^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2}
Take the square root of 3^{2}.
x=\frac{0}{2}
Now solve the equation x=\frac{-3±3}{2} when ± is plus. Add -3 to 3.
x=0
Divide 0 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{-3±3}{2} when ± is minus. Subtract 3 from -3.
x=-3
Divide -6 by 2.
x=0 x=-3
The equation is now solved.
x^{2}+3x+2.25=2.25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1.5\right)^{2}.
x^{2}+3x+2.25-2.25=0
Subtract 2.25 from both sides.
x^{2}+3x=0
Subtract 2.25 from 2.25 to get 0.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
Simplify.
x=0 x=-3
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}