Solve for b
b=\frac{2x+1}{2\left(x+1\right)}
x\neq -1
Solve for x
x=-\frac{1-2b}{2\left(1-b\right)}
b\neq 1
Graph
Share
Copied to clipboard
x^{2}-2bx+2x+b^{2}-2b+1+\left(x+3b\right)\left(x-3b\right)=2\left(x^{2}-4b^{2}\right)
Square x+1-b.
x^{2}-2bx+2x+b^{2}-2b+1+x^{2}-\left(3b\right)^{2}=2\left(x^{2}-4b^{2}\right)
Consider \left(x+3b\right)\left(x-3b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2bx+2x+b^{2}-2b+1+x^{2}-3^{2}b^{2}=2\left(x^{2}-4b^{2}\right)
Expand \left(3b\right)^{2}.
x^{2}-2bx+2x+b^{2}-2b+1+x^{2}-9b^{2}=2\left(x^{2}-4b^{2}\right)
Calculate 3 to the power of 2 and get 9.
2x^{2}-2bx+2x+b^{2}-2b+1-9b^{2}=2\left(x^{2}-4b^{2}\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2bx+2x-8b^{2}-2b+1=2\left(x^{2}-4b^{2}\right)
Combine b^{2} and -9b^{2} to get -8b^{2}.
2x^{2}-2bx+2x-8b^{2}-2b+1=2x^{2}-8b^{2}
Use the distributive property to multiply 2 by x^{2}-4b^{2}.
2x^{2}-2bx+2x-8b^{2}-2b+1+8b^{2}=2x^{2}
Add 8b^{2} to both sides.
2x^{2}-2bx+2x-2b+1=2x^{2}
Combine -8b^{2} and 8b^{2} to get 0.
-2bx+2x-2b+1=2x^{2}-2x^{2}
Subtract 2x^{2} from both sides.
-2bx+2x-2b+1=0
Combine 2x^{2} and -2x^{2} to get 0.
-2bx-2b+1=-2x
Subtract 2x from both sides. Anything subtracted from zero gives its negation.
-2bx-2b=-2x-1
Subtract 1 from both sides.
\left(-2x-2\right)b=-2x-1
Combine all terms containing b.
\frac{\left(-2x-2\right)b}{-2x-2}=\frac{-2x-1}{-2x-2}
Divide both sides by -2x-2.
b=\frac{-2x-1}{-2x-2}
Dividing by -2x-2 undoes the multiplication by -2x-2.
b=\frac{2x+1}{2\left(x+1\right)}
Divide -2x-1 by -2x-2.
x^{2}-2bx+2x+b^{2}-2b+1+\left(x+3b\right)\left(x-3b\right)=2\left(x^{2}-4b^{2}\right)
Square x+1-b.
x^{2}-2bx+2x+b^{2}-2b+1+x^{2}-\left(3b\right)^{2}=2\left(x^{2}-4b^{2}\right)
Consider \left(x+3b\right)\left(x-3b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2bx+2x+b^{2}-2b+1+x^{2}-3^{2}b^{2}=2\left(x^{2}-4b^{2}\right)
Expand \left(3b\right)^{2}.
x^{2}-2bx+2x+b^{2}-2b+1+x^{2}-9b^{2}=2\left(x^{2}-4b^{2}\right)
Calculate 3 to the power of 2 and get 9.
2x^{2}-2bx+2x+b^{2}-2b+1-9b^{2}=2\left(x^{2}-4b^{2}\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2bx+2x-8b^{2}-2b+1=2\left(x^{2}-4b^{2}\right)
Combine b^{2} and -9b^{2} to get -8b^{2}.
2x^{2}-2bx+2x-8b^{2}-2b+1=2x^{2}-8b^{2}
Use the distributive property to multiply 2 by x^{2}-4b^{2}.
2x^{2}-2bx+2x-8b^{2}-2b+1-2x^{2}=-8b^{2}
Subtract 2x^{2} from both sides.
-2bx+2x-8b^{2}-2b+1=-8b^{2}
Combine 2x^{2} and -2x^{2} to get 0.
-2bx+2x-2b+1=-8b^{2}+8b^{2}
Add 8b^{2} to both sides.
-2bx+2x-2b+1=0
Combine -8b^{2} and 8b^{2} to get 0.
-2bx+2x+1=2b
Add 2b to both sides. Anything plus zero gives itself.
-2bx+2x=2b-1
Subtract 1 from both sides.
\left(-2b+2\right)x=2b-1
Combine all terms containing x.
\left(2-2b\right)x=2b-1
The equation is in standard form.
\frac{\left(2-2b\right)x}{2-2b}=\frac{2b-1}{2-2b}
Divide both sides by -2b+2.
x=\frac{2b-1}{2-2b}
Dividing by -2b+2 undoes the multiplication by -2b+2.
x=\frac{2b-1}{2\left(1-b\right)}
Divide 2b-1 by -2b+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}