Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+1-x^{2}+49=0
To find the opposite of x^{2}-49, find the opposite of each term.
x+50-x^{2}=0
Add 1 and 49 to get 50.
-x^{2}+x+50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 50}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 50}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\times 50}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1+200}}{2\left(-1\right)}
Multiply 4 times 50.
x=\frac{-1±\sqrt{201}}{2\left(-1\right)}
Add 1 to 200.
x=\frac{-1±\sqrt{201}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{201}-1}{-2}
Now solve the equation x=\frac{-1±\sqrt{201}}{-2} when ± is plus. Add -1 to \sqrt{201}.
x=\frac{1-\sqrt{201}}{2}
Divide -1+\sqrt{201} by -2.
x=\frac{-\sqrt{201}-1}{-2}
Now solve the equation x=\frac{-1±\sqrt{201}}{-2} when ± is minus. Subtract \sqrt{201} from -1.
x=\frac{\sqrt{201}+1}{2}
Divide -1-\sqrt{201} by -2.
x=\frac{1-\sqrt{201}}{2} x=\frac{\sqrt{201}+1}{2}
The equation is now solved.
x+1-x^{2}+49=0
To find the opposite of x^{2}-49, find the opposite of each term.
x+50-x^{2}=0
Add 1 and 49 to get 50.
x-x^{2}=-50
Subtract 50 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+x=-50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=-\frac{50}{-1}
Divide both sides by -1.
x^{2}+\frac{1}{-1}x=-\frac{50}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-x=-\frac{50}{-1}
Divide 1 by -1.
x^{2}-x=50
Divide -50 by -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=50+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=50+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{201}{4}
Add 50 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{201}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{201}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{201}}{2} x-\frac{1}{2}=-\frac{\sqrt{201}}{2}
Simplify.
x=\frac{\sqrt{201}+1}{2} x=\frac{1-\sqrt{201}}{2}
Add \frac{1}{2} to both sides of the equation.