Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-1-\left(x+2\right)\left(x-2\right)+\left(2x+1\right)^{2}
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1-\left(x^{2}-4\right)+\left(2x+1\right)^{2}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{2}-1-x^{2}+4+\left(2x+1\right)^{2}
To find the opposite of x^{2}-4, find the opposite of each term.
-1+4+\left(2x+1\right)^{2}
Combine x^{2} and -x^{2} to get 0.
3+\left(2x+1\right)^{2}
Add -1 and 4 to get 3.
3+4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4+4x^{2}+4x
Add 3 and 1 to get 4.
x^{2}-1-\left(x+2\right)\left(x-2\right)+\left(2x+1\right)^{2}
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1-\left(x^{2}-4\right)+\left(2x+1\right)^{2}
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{2}-1-x^{2}+4+\left(2x+1\right)^{2}
To find the opposite of x^{2}-4, find the opposite of each term.
-1+4+\left(2x+1\right)^{2}
Combine x^{2} and -x^{2} to get 0.
3+\left(2x+1\right)^{2}
Add -1 and 4 to get 3.
3+4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4+4x^{2}+4x
Add 3 and 1 to get 4.