Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+5=-3
Use the distributive property to multiply x+1 by x+5 and combine like terms.
x^{2}+6x+5+3=0
Add 3 to both sides.
x^{2}+6x+8=0
Add 5 and 3 to get 8.
x=\frac{-6±\sqrt{6^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 8}}{2}
Square 6.
x=\frac{-6±\sqrt{36-32}}{2}
Multiply -4 times 8.
x=\frac{-6±\sqrt{4}}{2}
Add 36 to -32.
x=\frac{-6±2}{2}
Take the square root of 4.
x=-\frac{4}{2}
Now solve the equation x=\frac{-6±2}{2} when ± is plus. Add -6 to 2.
x=-2
Divide -4 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{-6±2}{2} when ± is minus. Subtract 2 from -6.
x=-4
Divide -8 by 2.
x=-2 x=-4
The equation is now solved.
x^{2}+6x+5=-3
Use the distributive property to multiply x+1 by x+5 and combine like terms.
x^{2}+6x=-3-5
Subtract 5 from both sides.
x^{2}+6x=-8
Subtract 5 from -3 to get -8.
x^{2}+6x+3^{2}=-8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-8+9
Square 3.
x^{2}+6x+9=1
Add -8 to 9.
\left(x+3\right)^{2}=1
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+3=1 x+3=-1
Simplify.
x=-2 x=-4
Subtract 3 from both sides of the equation.