Solve for x
x<-7
Graph
Share
Copied to clipboard
x\times \frac{1}{2}+\frac{1}{2}<\left(2x-1\right)\times \frac{1}{5}
Use the distributive property to multiply x+1 by \frac{1}{2}.
x\times \frac{1}{2}+\frac{1}{2}<2x\times \frac{1}{5}-\frac{1}{5}
Use the distributive property to multiply 2x-1 by \frac{1}{5}.
x\times \frac{1}{2}+\frac{1}{2}<\frac{2}{5}x-\frac{1}{5}
Multiply 2 and \frac{1}{5} to get \frac{2}{5}.
x\times \frac{1}{2}+\frac{1}{2}-\frac{2}{5}x<-\frac{1}{5}
Subtract \frac{2}{5}x from both sides.
\frac{1}{10}x+\frac{1}{2}<-\frac{1}{5}
Combine x\times \frac{1}{2} and -\frac{2}{5}x to get \frac{1}{10}x.
\frac{1}{10}x<-\frac{1}{5}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{1}{10}x<-\frac{2}{10}-\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{1}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{1}{10}x<\frac{-2-5}{10}
Since -\frac{2}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{10}x<-\frac{7}{10}
Subtract 5 from -2 to get -7.
x<-\frac{7}{10}\times 10
Multiply both sides by 10, the reciprocal of \frac{1}{10}. Since \frac{1}{10} is positive, the inequality direction remains the same.
x<-7
Cancel out 10 and 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}