Evaluate
\frac{x}{x+1}
Expand
\frac{x}{x+1}
Graph
Share
Copied to clipboard
\frac{x+1}{\frac{2x}{x}+\frac{1+x^{2}}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{x+1}{\frac{2x+1+x^{2}}{x}}
Since \frac{2x}{x} and \frac{1+x^{2}}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x+1\right)x}{2x+1+x^{2}}
Divide x+1 by \frac{2x+1+x^{2}}{x} by multiplying x+1 by the reciprocal of \frac{2x+1+x^{2}}{x}.
\frac{x\left(x+1\right)}{\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{x}{x+1}
Cancel out x+1 in both numerator and denominator.
\frac{x+1}{\frac{2x}{x}+\frac{1+x^{2}}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{x+1}{\frac{2x+1+x^{2}}{x}}
Since \frac{2x}{x} and \frac{1+x^{2}}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x+1\right)x}{2x+1+x^{2}}
Divide x+1 by \frac{2x+1+x^{2}}{x} by multiplying x+1 by the reciprocal of \frac{2x+1+x^{2}}{x}.
\frac{x\left(x+1\right)}{\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{x}{x+1}
Cancel out x+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}