Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x+3\right)x+2=1064
Use the distributive property to multiply x+1 by 3.
3x^{2}+3x+2=1064
Use the distributive property to multiply 3x+3 by x.
3x^{2}+3x+2-1064=0
Subtract 1064 from both sides.
3x^{2}+3x-1062=0
Subtract 1064 from 2 to get -1062.
x=\frac{-3±\sqrt{3^{2}-4\times 3\left(-1062\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 3 for b, and -1062 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 3\left(-1062\right)}}{2\times 3}
Square 3.
x=\frac{-3±\sqrt{9-12\left(-1062\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-3±\sqrt{9+12744}}{2\times 3}
Multiply -12 times -1062.
x=\frac{-3±\sqrt{12753}}{2\times 3}
Add 9 to 12744.
x=\frac{-3±3\sqrt{1417}}{2\times 3}
Take the square root of 12753.
x=\frac{-3±3\sqrt{1417}}{6}
Multiply 2 times 3.
x=\frac{3\sqrt{1417}-3}{6}
Now solve the equation x=\frac{-3±3\sqrt{1417}}{6} when ± is plus. Add -3 to 3\sqrt{1417}.
x=\frac{\sqrt{1417}-1}{2}
Divide -3+3\sqrt{1417} by 6.
x=\frac{-3\sqrt{1417}-3}{6}
Now solve the equation x=\frac{-3±3\sqrt{1417}}{6} when ± is minus. Subtract 3\sqrt{1417} from -3.
x=\frac{-\sqrt{1417}-1}{2}
Divide -3-3\sqrt{1417} by 6.
x=\frac{\sqrt{1417}-1}{2} x=\frac{-\sqrt{1417}-1}{2}
The equation is now solved.
\left(3x+3\right)x+2=1064
Use the distributive property to multiply x+1 by 3.
3x^{2}+3x+2=1064
Use the distributive property to multiply 3x+3 by x.
3x^{2}+3x=1064-2
Subtract 2 from both sides.
3x^{2}+3x=1062
Subtract 2 from 1064 to get 1062.
\frac{3x^{2}+3x}{3}=\frac{1062}{3}
Divide both sides by 3.
x^{2}+\frac{3}{3}x=\frac{1062}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+x=\frac{1062}{3}
Divide 3 by 3.
x^{2}+x=354
Divide 1062 by 3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=354+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=354+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{1417}{4}
Add 354 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{1417}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1417}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{1417}}{2} x+\frac{1}{2}=-\frac{\sqrt{1417}}{2}
Simplify.
x=\frac{\sqrt{1417}-1}{2} x=\frac{-\sqrt{1417}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.