Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}+3x^{2}+3x+1-\left(x-1\right)^{3}=x^{2}+3
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
x^{3}+3x^{2}+3x+1-\left(x^{3}-3x^{2}+3x-1\right)=x^{2}+3
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}+3x^{2}+3x+1-x^{3}+3x^{2}-3x+1=x^{2}+3
To find the opposite of x^{3}-3x^{2}+3x-1, find the opposite of each term.
3x^{2}+3x+1+3x^{2}-3x+1=x^{2}+3
Combine x^{3} and -x^{3} to get 0.
6x^{2}+3x+1-3x+1=x^{2}+3
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
6x^{2}+1+1=x^{2}+3
Combine 3x and -3x to get 0.
6x^{2}+2=x^{2}+3
Add 1 and 1 to get 2.
6x^{2}+2-x^{2}=3
Subtract x^{2} from both sides.
5x^{2}+2=3
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}=3-2
Subtract 2 from both sides.
5x^{2}=1
Subtract 2 from 3 to get 1.
x^{2}=\frac{1}{5}
Divide both sides by 5.
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
Take the square root of both sides of the equation.
x^{3}+3x^{2}+3x+1-\left(x-1\right)^{3}=x^{2}+3
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
x^{3}+3x^{2}+3x+1-\left(x^{3}-3x^{2}+3x-1\right)=x^{2}+3
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}+3x^{2}+3x+1-x^{3}+3x^{2}-3x+1=x^{2}+3
To find the opposite of x^{3}-3x^{2}+3x-1, find the opposite of each term.
3x^{2}+3x+1+3x^{2}-3x+1=x^{2}+3
Combine x^{3} and -x^{3} to get 0.
6x^{2}+3x+1-3x+1=x^{2}+3
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
6x^{2}+1+1=x^{2}+3
Combine 3x and -3x to get 0.
6x^{2}+2=x^{2}+3
Add 1 and 1 to get 2.
6x^{2}+2-x^{2}=3
Subtract x^{2} from both sides.
5x^{2}+2=3
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}+2-3=0
Subtract 3 from both sides.
5x^{2}-1=0
Subtract 3 from 2 to get -1.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-1\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-1\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-1\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{20}}{2\times 5}
Multiply -20 times -1.
x=\frac{0±2\sqrt{5}}{2\times 5}
Take the square root of 20.
x=\frac{0±2\sqrt{5}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{5}}{5}
Now solve the equation x=\frac{0±2\sqrt{5}}{10} when ± is plus.
x=-\frac{\sqrt{5}}{5}
Now solve the equation x=\frac{0±2\sqrt{5}}{10} when ± is minus.
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
The equation is now solved.