Solve for x
x=4
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
x^{2}+2x+1-\left(2x-3\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-\left(4x^{2}-12x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
x^{2}+2x+1-4x^{2}+12x-9=0
To find the opposite of 4x^{2}-12x+9, find the opposite of each term.
-3x^{2}+2x+1+12x-9=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+14x+1-9=0
Combine 2x and 12x to get 14x.
-3x^{2}+14x-8=0
Subtract 9 from 1 to get -8.
a+b=14 ab=-3\left(-8\right)=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
1,24 2,12 3,8 4,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 24.
1+24=25 2+12=14 3+8=11 4+6=10
Calculate the sum for each pair.
a=12 b=2
The solution is the pair that gives sum 14.
\left(-3x^{2}+12x\right)+\left(2x-8\right)
Rewrite -3x^{2}+14x-8 as \left(-3x^{2}+12x\right)+\left(2x-8\right).
3x\left(-x+4\right)-2\left(-x+4\right)
Factor out 3x in the first and -2 in the second group.
\left(-x+4\right)\left(3x-2\right)
Factor out common term -x+4 by using distributive property.
x=4 x=\frac{2}{3}
To find equation solutions, solve -x+4=0 and 3x-2=0.
x^{2}+2x+1-\left(2x-3\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-\left(4x^{2}-12x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
x^{2}+2x+1-4x^{2}+12x-9=0
To find the opposite of 4x^{2}-12x+9, find the opposite of each term.
-3x^{2}+2x+1+12x-9=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+14x+1-9=0
Combine 2x and 12x to get 14x.
-3x^{2}+14x-8=0
Subtract 9 from 1 to get -8.
x=\frac{-14±\sqrt{14^{2}-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 14 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-3\right)\left(-8\right)}}{2\left(-3\right)}
Square 14.
x=\frac{-14±\sqrt{196+12\left(-8\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-14±\sqrt{196-96}}{2\left(-3\right)}
Multiply 12 times -8.
x=\frac{-14±\sqrt{100}}{2\left(-3\right)}
Add 196 to -96.
x=\frac{-14±10}{2\left(-3\right)}
Take the square root of 100.
x=\frac{-14±10}{-6}
Multiply 2 times -3.
x=-\frac{4}{-6}
Now solve the equation x=\frac{-14±10}{-6} when ± is plus. Add -14 to 10.
x=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{-6}
Now solve the equation x=\frac{-14±10}{-6} when ± is minus. Subtract 10 from -14.
x=4
Divide -24 by -6.
x=\frac{2}{3} x=4
The equation is now solved.
x^{2}+2x+1-\left(2x-3\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-\left(4x^{2}-12x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
x^{2}+2x+1-4x^{2}+12x-9=0
To find the opposite of 4x^{2}-12x+9, find the opposite of each term.
-3x^{2}+2x+1+12x-9=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+14x+1-9=0
Combine 2x and 12x to get 14x.
-3x^{2}+14x-8=0
Subtract 9 from 1 to get -8.
-3x^{2}+14x=8
Add 8 to both sides. Anything plus zero gives itself.
\frac{-3x^{2}+14x}{-3}=\frac{8}{-3}
Divide both sides by -3.
x^{2}+\frac{14}{-3}x=\frac{8}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{14}{3}x=\frac{8}{-3}
Divide 14 by -3.
x^{2}-\frac{14}{3}x=-\frac{8}{3}
Divide 8 by -3.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=-\frac{8}{3}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=-\frac{8}{3}+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{25}{9}
Add -\frac{8}{3} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{3}\right)^{2}=\frac{25}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{5}{3} x-\frac{7}{3}=-\frac{5}{3}
Simplify.
x=4 x=\frac{2}{3}
Add \frac{7}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}