Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{2}+2x+1\right)\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{2}+2x+1 by x-\left(1-3i\right).
x^{2}\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right) by x-\left(1+3i\right).
x^{2}\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1-3i to get -1+3i.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1+3i to get -1-3i.
\left(x^{3}+\left(-1+3i\right)x^{2}\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{2} by x+\left(-1+3i\right).
x^{4}-2x^{3}+10x^{2}+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{3}+\left(-1+3i\right)x^{2} by x+\left(-1-3i\right) and combine like terms.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1-3i to get -1+3i.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1+3i to get -1-3i.
x^{4}-2x^{3}+10x^{2}+\left(2x^{2}+\left(-2+6i\right)x\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply 2x by x+\left(-1+3i\right).
x^{4}-2x^{3}+10x^{2}+2x^{3}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply 2x^{2}+\left(-2+6i\right)x by x+\left(-1-3i\right) and combine like terms.
x^{4}+10x^{2}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Combine -2x^{3} and 2x^{3} to get 0.
x^{4}+6x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Combine 10x^{2} and -4x^{2} to get 6x^{2}.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1-3i to get -1+3i.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)
Multiply -1 and 1+3i to get -1-3i.
x^{4}+6x^{2}+20x+x^{2}-2x+10
Use the distributive property to multiply x+\left(-1+3i\right) by x+\left(-1-3i\right) and combine like terms.
x^{4}+7x^{2}+20x-2x+10
Combine 6x^{2} and x^{2} to get 7x^{2}.
x^{4}+7x^{2}+18x+10
Combine 20x and -2x to get 18x.
\left(x^{2}+2x+1\right)\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{2}+2x+1 by x-\left(1-3i\right).
x^{2}\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right) by x-\left(1+3i\right).
x^{2}\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1-3i to get -1+3i.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1+3i to get -1-3i.
\left(x^{3}+\left(-1+3i\right)x^{2}\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{2} by x+\left(-1+3i\right).
x^{4}-2x^{3}+10x^{2}+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply x^{3}+\left(-1+3i\right)x^{2} by x+\left(-1-3i\right) and combine like terms.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1-3i to get -1+3i.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1+3i to get -1-3i.
x^{4}-2x^{3}+10x^{2}+\left(2x^{2}+\left(-2+6i\right)x\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply 2x by x+\left(-1+3i\right).
x^{4}-2x^{3}+10x^{2}+2x^{3}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Use the distributive property to multiply 2x^{2}+\left(-2+6i\right)x by x+\left(-1-3i\right) and combine like terms.
x^{4}+10x^{2}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Combine -2x^{3} and 2x^{3} to get 0.
x^{4}+6x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
Combine 10x^{2} and -4x^{2} to get 6x^{2}.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)
Multiply -1 and 1-3i to get -1+3i.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)
Multiply -1 and 1+3i to get -1-3i.
x^{4}+6x^{2}+20x+x^{2}-2x+10
Use the distributive property to multiply x+\left(-1+3i\right) by x+\left(-1-3i\right) and combine like terms.
x^{4}+7x^{2}+20x-2x+10
Combine 6x^{2} and x^{2} to get 7x^{2}.
x^{4}+7x^{2}+18x+10
Combine 20x and -2x to get 18x.