Solve for x
x<1
Graph
Share
Copied to clipboard
x^{2}+2x+1>\left(6-\left(1-x\right)\right)x-2
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1>\left(6-1+x\right)x-2
To find the opposite of 1-x, find the opposite of each term.
x^{2}+2x+1>\left(5+x\right)x-2
Subtract 1 from 6 to get 5.
x^{2}+2x+1>5x+x^{2}-2
Use the distributive property to multiply 5+x by x.
x^{2}+2x+1-5x>x^{2}-2
Subtract 5x from both sides.
x^{2}-3x+1>x^{2}-2
Combine 2x and -5x to get -3x.
x^{2}-3x+1-x^{2}>-2
Subtract x^{2} from both sides.
-3x+1>-2
Combine x^{2} and -x^{2} to get 0.
-3x>-2-1
Subtract 1 from both sides.
-3x>-3
Subtract 1 from -2 to get -3.
x<\frac{-3}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x<1
Divide -3 by -3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}