Solve for y
y=\frac{\left(x+1\right)^{2}+48}{8}
Solve for x (complex solution)
x=-2\sqrt{2\left(y-6\right)}-1
x=2\sqrt{2\left(y-6\right)}-1
Solve for x
x=-2\sqrt{2\left(y-6\right)}-1
x=2\sqrt{2\left(y-6\right)}-1\text{, }y\geq 6
Graph
Share
Copied to clipboard
x^{2}+2x+1=4\times 2\left(y-6\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=8\left(y-6\right)
Multiply 4 and 2 to get 8.
x^{2}+2x+1=8y-48
Use the distributive property to multiply 8 by y-6.
8y-48=x^{2}+2x+1
Swap sides so that all variable terms are on the left hand side.
8y=x^{2}+2x+1+48
Add 48 to both sides.
8y=x^{2}+2x+49
Add 1 and 48 to get 49.
\frac{8y}{8}=\frac{x^{2}+2x+49}{8}
Divide both sides by 8.
y=\frac{x^{2}+2x+49}{8}
Dividing by 8 undoes the multiplication by 8.
y=\frac{x^{2}}{8}+\frac{x}{4}+\frac{49}{8}
Divide x^{2}+2x+49 by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}