Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x+1=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Subtract 16 from both sides.
x^{2}+2x-15=0
Subtract 16 from 1 to get -15.
a+b=2 ab=-15
To solve the equation, factor x^{2}+2x-15 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-3 b=5
The solution is the pair that gives sum 2.
\left(x-3\right)\left(x+5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=3 x=-5
To find equation solutions, solve x-3=0 and x+5=0.
x^{2}+2x+1=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Subtract 16 from both sides.
x^{2}+2x-15=0
Subtract 16 from 1 to get -15.
a+b=2 ab=1\left(-15\right)=-15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=-3 b=5
The solution is the pair that gives sum 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Rewrite x^{2}+2x-15 as \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Factor out x in the first and 5 in the second group.
\left(x-3\right)\left(x+5\right)
Factor out common term x-3 by using distributive property.
x=3 x=-5
To find equation solutions, solve x-3=0 and x+5=0.
x^{2}+2x+1=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-16=0
Subtract 16 from both sides.
x^{2}+2x-15=0
Subtract 16 from 1 to get -15.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+60}}{2}
Multiply -4 times -15.
x=\frac{-2±\sqrt{64}}{2}
Add 4 to 60.
x=\frac{-2±8}{2}
Take the square root of 64.
x=\frac{6}{2}
Now solve the equation x=\frac{-2±8}{2} when ± is plus. Add -2 to 8.
x=3
Divide 6 by 2.
x=-\frac{10}{2}
Now solve the equation x=\frac{-2±8}{2} when ± is minus. Subtract 8 from -2.
x=-5
Divide -10 by 2.
x=3 x=-5
The equation is now solved.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x+1=4 x+1=-4
Simplify.
x=3 x=-5
Subtract 1 from both sides of the equation.