Solve for x
x=2\sqrt{7}-1\approx 4.291502622
x=-2\sqrt{7}-1\approx -6.291502622
Graph
Share
Copied to clipboard
x^{2}+2x+1+2\left(-8-4\right)=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+2\left(-12\right)=4
Subtract 4 from -8 to get -12.
x^{2}+2x+1-24=4
Multiply 2 and -12 to get -24.
x^{2}+2x-23=4
Subtract 24 from 1 to get -23.
x^{2}+2x-23-4=0
Subtract 4 from both sides.
x^{2}+2x-27=0
Subtract 4 from -23 to get -27.
x=\frac{-2±\sqrt{2^{2}-4\left(-27\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-27\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+108}}{2}
Multiply -4 times -27.
x=\frac{-2±\sqrt{112}}{2}
Add 4 to 108.
x=\frac{-2±4\sqrt{7}}{2}
Take the square root of 112.
x=\frac{4\sqrt{7}-2}{2}
Now solve the equation x=\frac{-2±4\sqrt{7}}{2} when ± is plus. Add -2 to 4\sqrt{7}.
x=2\sqrt{7}-1
Divide -2+4\sqrt{7} by 2.
x=\frac{-4\sqrt{7}-2}{2}
Now solve the equation x=\frac{-2±4\sqrt{7}}{2} when ± is minus. Subtract 4\sqrt{7} from -2.
x=-2\sqrt{7}-1
Divide -2-4\sqrt{7} by 2.
x=2\sqrt{7}-1 x=-2\sqrt{7}-1
The equation is now solved.
x^{2}+2x+1+2\left(-8-4\right)=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+2\left(-12\right)=4
Subtract 4 from -8 to get -12.
x^{2}+2x+1-24=4
Multiply 2 and -12 to get -24.
x^{2}+2x-23=4
Subtract 24 from 1 to get -23.
x^{2}+2x=4+23
Add 23 to both sides.
x^{2}+2x=27
Add 4 and 23 to get 27.
x^{2}+2x+1^{2}=27+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=27+1
Square 1.
x^{2}+2x+1=28
Add 27 to 1.
\left(x+1\right)^{2}=28
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{28}
Take the square root of both sides of the equation.
x+1=2\sqrt{7} x+1=-2\sqrt{7}
Simplify.
x=2\sqrt{7}-1 x=-2\sqrt{7}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}