Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=-1
Graph
Share
Copied to clipboard
x^{2}+2x+1+\left(x+3\right)^{2}=x+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+x^{2}+6x+9=x+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+2x+1+6x+9=x+5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+8x+1+9=x+5
Combine 2x and 6x to get 8x.
2x^{2}+8x+10=x+5
Add 1 and 9 to get 10.
2x^{2}+8x+10-x=5
Subtract x from both sides.
2x^{2}+7x+10=5
Combine 8x and -x to get 7x.
2x^{2}+7x+10-5=0
Subtract 5 from both sides.
2x^{2}+7x+5=0
Subtract 5 from 10 to get 5.
a+b=7 ab=2\times 5=10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
1,10 2,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 10.
1+10=11 2+5=7
Calculate the sum for each pair.
a=2 b=5
The solution is the pair that gives sum 7.
\left(2x^{2}+2x\right)+\left(5x+5\right)
Rewrite 2x^{2}+7x+5 as \left(2x^{2}+2x\right)+\left(5x+5\right).
2x\left(x+1\right)+5\left(x+1\right)
Factor out 2x in the first and 5 in the second group.
\left(x+1\right)\left(2x+5\right)
Factor out common term x+1 by using distributive property.
x=-1 x=-\frac{5}{2}
To find equation solutions, solve x+1=0 and 2x+5=0.
x^{2}+2x+1+\left(x+3\right)^{2}=x+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+x^{2}+6x+9=x+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+2x+1+6x+9=x+5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+8x+1+9=x+5
Combine 2x and 6x to get 8x.
2x^{2}+8x+10=x+5
Add 1 and 9 to get 10.
2x^{2}+8x+10-x=5
Subtract x from both sides.
2x^{2}+7x+10=5
Combine 8x and -x to get 7x.
2x^{2}+7x+10-5=0
Subtract 5 from both sides.
2x^{2}+7x+5=0
Subtract 5 from 10 to get 5.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Multiply -8 times 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Add 49 to -40.
x=\frac{-7±3}{2\times 2}
Take the square root of 9.
x=\frac{-7±3}{4}
Multiply 2 times 2.
x=-\frac{4}{4}
Now solve the equation x=\frac{-7±3}{4} when ± is plus. Add -7 to 3.
x=-1
Divide -4 by 4.
x=-\frac{10}{4}
Now solve the equation x=\frac{-7±3}{4} when ± is minus. Subtract 3 from -7.
x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x=-1 x=-\frac{5}{2}
The equation is now solved.
x^{2}+2x+1+\left(x+3\right)^{2}=x+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+x^{2}+6x+9=x+5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+2x+1+6x+9=x+5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+8x+1+9=x+5
Combine 2x and 6x to get 8x.
2x^{2}+8x+10=x+5
Add 1 and 9 to get 10.
2x^{2}+8x+10-x=5
Subtract x from both sides.
2x^{2}+7x+10=5
Combine 8x and -x to get 7x.
2x^{2}+7x=5-10
Subtract 10 from both sides.
2x^{2}+7x=-5
Subtract 10 from 5 to get -5.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Add -\frac{5}{2} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
Simplify.
x=-1 x=-\frac{5}{2}
Subtract \frac{7}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}