Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+1-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-9\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 1 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-9\right)}}{2\left(-9\right)}
Square 1.
x=\frac{-1±\sqrt{1+36}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-1±\sqrt{37}}{2\left(-9\right)}
Add 1 to 36.
x=\frac{-1±\sqrt{37}}{-18}
Multiply 2 times -9.
x=\frac{\sqrt{37}-1}{-18}
Now solve the equation x=\frac{-1±\sqrt{37}}{-18} when ± is plus. Add -1 to \sqrt{37}.
x=\frac{1-\sqrt{37}}{18}
Divide -1+\sqrt{37} by -18.
x=\frac{-\sqrt{37}-1}{-18}
Now solve the equation x=\frac{-1±\sqrt{37}}{-18} when ± is minus. Subtract \sqrt{37} from -1.
x=\frac{\sqrt{37}+1}{18}
Divide -1-\sqrt{37} by -18.
x=\frac{1-\sqrt{37}}{18} x=\frac{\sqrt{37}+1}{18}
The equation is now solved.
x+1-9x^{2}=0
Subtract 9x^{2} from both sides.
x-9x^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-9x^{2}+x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+x}{-9}=-\frac{1}{-9}
Divide both sides by -9.
x^{2}+\frac{1}{-9}x=-\frac{1}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{1}{9}x=-\frac{1}{-9}
Divide 1 by -9.
x^{2}-\frac{1}{9}x=\frac{1}{9}
Divide -1 by -9.
x^{2}-\frac{1}{9}x+\left(-\frac{1}{18}\right)^{2}=\frac{1}{9}+\left(-\frac{1}{18}\right)^{2}
Divide -\frac{1}{9}, the coefficient of the x term, by 2 to get -\frac{1}{18}. Then add the square of -\frac{1}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{9}x+\frac{1}{324}=\frac{1}{9}+\frac{1}{324}
Square -\frac{1}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{9}x+\frac{1}{324}=\frac{37}{324}
Add \frac{1}{9} to \frac{1}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{18}\right)^{2}=\frac{37}{324}
Factor x^{2}-\frac{1}{9}x+\frac{1}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{18}\right)^{2}}=\sqrt{\frac{37}{324}}
Take the square root of both sides of the equation.
x-\frac{1}{18}=\frac{\sqrt{37}}{18} x-\frac{1}{18}=-\frac{\sqrt{37}}{18}
Simplify.
x=\frac{\sqrt{37}+1}{18} x=\frac{1-\sqrt{37}}{18}
Add \frac{1}{18} to both sides of the equation.