Solve for x
x=10\sqrt{105}+130\approx 232.46950766
x=130-10\sqrt{105}\approx 27.53049234
Graph
Share
Copied to clipboard
\left(x+0\right)\left(1300-5x\right)=32000
Multiply 0 and 0 to get 0.
x\left(1300-5x\right)=32000
Anything plus zero gives itself.
1300x-5x^{2}=32000
Use the distributive property to multiply x by 1300-5x.
1300x-5x^{2}-32000=0
Subtract 32000 from both sides.
-5x^{2}+1300x-32000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1300±\sqrt{1300^{2}-4\left(-5\right)\left(-32000\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 1300 for b, and -32000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1300±\sqrt{1690000-4\left(-5\right)\left(-32000\right)}}{2\left(-5\right)}
Square 1300.
x=\frac{-1300±\sqrt{1690000+20\left(-32000\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-1300±\sqrt{1690000-640000}}{2\left(-5\right)}
Multiply 20 times -32000.
x=\frac{-1300±\sqrt{1050000}}{2\left(-5\right)}
Add 1690000 to -640000.
x=\frac{-1300±100\sqrt{105}}{2\left(-5\right)}
Take the square root of 1050000.
x=\frac{-1300±100\sqrt{105}}{-10}
Multiply 2 times -5.
x=\frac{100\sqrt{105}-1300}{-10}
Now solve the equation x=\frac{-1300±100\sqrt{105}}{-10} when ± is plus. Add -1300 to 100\sqrt{105}.
x=130-10\sqrt{105}
Divide -1300+100\sqrt{105} by -10.
x=\frac{-100\sqrt{105}-1300}{-10}
Now solve the equation x=\frac{-1300±100\sqrt{105}}{-10} when ± is minus. Subtract 100\sqrt{105} from -1300.
x=10\sqrt{105}+130
Divide -1300-100\sqrt{105} by -10.
x=130-10\sqrt{105} x=10\sqrt{105}+130
The equation is now solved.
\left(x+0\right)\left(1300-5x\right)=32000
Multiply 0 and 0 to get 0.
x\left(1300-5x\right)=32000
Anything plus zero gives itself.
1300x-5x^{2}=32000
Use the distributive property to multiply x by 1300-5x.
-5x^{2}+1300x=32000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+1300x}{-5}=\frac{32000}{-5}
Divide both sides by -5.
x^{2}+\frac{1300}{-5}x=\frac{32000}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-260x=\frac{32000}{-5}
Divide 1300 by -5.
x^{2}-260x=-6400
Divide 32000 by -5.
x^{2}-260x+\left(-130\right)^{2}=-6400+\left(-130\right)^{2}
Divide -260, the coefficient of the x term, by 2 to get -130. Then add the square of -130 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-260x+16900=-6400+16900
Square -130.
x^{2}-260x+16900=10500
Add -6400 to 16900.
\left(x-130\right)^{2}=10500
Factor x^{2}-260x+16900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-130\right)^{2}}=\sqrt{10500}
Take the square root of both sides of the equation.
x-130=10\sqrt{105} x-130=-10\sqrt{105}
Simplify.
x=10\sqrt{105}+130 x=130-10\sqrt{105}
Add 130 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}