Evaluate
\left(x+\sqrt{2}\right)\left(x+3\sqrt{2}\right)
Differentiate w.r.t. x
2\left(x+2\sqrt{2}\right)
Graph
Share
Copied to clipboard
x^{2}+3x\sqrt{2}+\sqrt{2}x+3\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of x+\sqrt{2} by each term of x+3\sqrt{2}.
x^{2}+4x\sqrt{2}+3\left(\sqrt{2}\right)^{2}
Combine 3x\sqrt{2} and \sqrt{2}x to get 4x\sqrt{2}.
x^{2}+4x\sqrt{2}+3\times 2
The square of \sqrt{2} is 2.
x^{2}+4x\sqrt{2}+6
Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+3x\sqrt{2}+\sqrt{2}x+3\left(\sqrt{2}\right)^{2})
Apply the distributive property by multiplying each term of x+\sqrt{2} by each term of x+3\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+4x\sqrt{2}+3\left(\sqrt{2}\right)^{2})
Combine 3x\sqrt{2} and \sqrt{2}x to get 4x\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+4x\sqrt{2}+3\times 2)
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+4x\sqrt{2}+6)
Multiply 3 and 2 to get 6.
2x^{2-1}+4\sqrt{2}x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
2x^{1}+4\sqrt{2}x^{1-1}
Subtract 1 from 2.
2x^{1}+4\sqrt{2}x^{0}
Subtract 1 from 1.
2x+4\sqrt{2}x^{0}
For any term t, t^{1}=t.
2x+4\sqrt{2}\times 1
For any term t except 0, t^{0}=1.
2x+4\sqrt{2}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}