Evaluate
y
Differentiate w.r.t. y
1
Share
Copied to clipboard
\frac{\frac{x\left(1+xy\right)}{1+xy}+\frac{y-x}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1+xy}{1+xy}.
\frac{\frac{x\left(1+xy\right)+y-x}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}}
Since \frac{x\left(1+xy\right)}{1+xy} and \frac{y-x}{1+xy} have the same denominator, add them by adding their numerators.
\frac{\frac{x+x^{2}y+y-x}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}}
Do the multiplications in x\left(1+xy\right)+y-x.
\frac{\frac{y+x^{2}y}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}}
Combine like terms in x+x^{2}y+y-x.
\frac{\frac{y+x^{2}y}{1+xy}}{\frac{1+xy}{1+xy}+\frac{x^{2}-xy}{1+xy}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+xy}{1+xy}.
\frac{\frac{y+x^{2}y}{1+xy}}{\frac{1+xy+x^{2}-xy}{1+xy}}
Since \frac{1+xy}{1+xy} and \frac{x^{2}-xy}{1+xy} have the same denominator, add them by adding their numerators.
\frac{\frac{y+x^{2}y}{1+xy}}{\frac{1+x^{2}}{1+xy}}
Combine like terms in 1+xy+x^{2}-xy.
\frac{\left(y+x^{2}y\right)\left(1+xy\right)}{\left(1+xy\right)\left(1+x^{2}\right)}
Divide \frac{y+x^{2}y}{1+xy} by \frac{1+x^{2}}{1+xy} by multiplying \frac{y+x^{2}y}{1+xy} by the reciprocal of \frac{1+x^{2}}{1+xy}.
\frac{yx^{2}+y}{x^{2}+1}
Cancel out xy+1 in both numerator and denominator.
\frac{y\left(x^{2}+1\right)}{x^{2}+1}
Factor the expressions that are not already factored.
y
Cancel out x^{2}+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{x\left(1+xy\right)}{1+xy}+\frac{y-x}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}})
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1+xy}{1+xy}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{x\left(1+xy\right)+y-x}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}})
Since \frac{x\left(1+xy\right)}{1+xy} and \frac{y-x}{1+xy} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{x+x^{2}y+y-x}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}})
Do the multiplications in x\left(1+xy\right)+y-x.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{y+x^{2}y}{1+xy}}{1+\frac{x^{2}-xy}{1+xy}})
Combine like terms in x+x^{2}y+y-x.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{y+x^{2}y}{1+xy}}{\frac{1+xy}{1+xy}+\frac{x^{2}-xy}{1+xy}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+xy}{1+xy}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{y+x^{2}y}{1+xy}}{\frac{1+xy+x^{2}-xy}{1+xy}})
Since \frac{1+xy}{1+xy} and \frac{x^{2}-xy}{1+xy} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{y+x^{2}y}{1+xy}}{\frac{1+x^{2}}{1+xy}})
Combine like terms in 1+xy+x^{2}-xy.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(y+x^{2}y\right)\left(1+xy\right)}{\left(1+xy\right)\left(1+x^{2}\right)})
Divide \frac{y+x^{2}y}{1+xy} by \frac{1+x^{2}}{1+xy} by multiplying \frac{y+x^{2}y}{1+xy} by the reciprocal of \frac{1+x^{2}}{1+xy}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{yx^{2}+y}{x^{2}+1})
Cancel out xy+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y\left(x^{2}+1\right)}{x^{2}+1})
Factor the expressions that are not already factored in \frac{yx^{2}+y}{x^{2}+1}.
\frac{\mathrm{d}}{\mathrm{d}y}(y)
Cancel out x^{2}+1 in both numerator and denominator.
y^{1-1}
The derivative of ax^{n} is nax^{n-1}.
y^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}