Solve for h
h=40mn-10x
n\neq 0\text{ and }m\neq 0
Solve for m
m=\frac{10x+h}{40n}
n\neq 0\text{ and }x\neq -\frac{h}{10}
Graph
Share
Copied to clipboard
10x+h=10\left(-2m^{2}n^{-1}\right)^{2}m^{-3}n^{3}
Multiply both sides of the equation by 10.
10x+h=10\left(-2\right)^{2}\left(m^{2}\right)^{2}\left(n^{-1}\right)^{2}m^{-3}n^{3}
Expand \left(-2m^{2}n^{-1}\right)^{2}.
10x+h=10\left(-2\right)^{2}m^{4}\left(n^{-1}\right)^{2}m^{-3}n^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
10x+h=10\left(-2\right)^{2}m^{4}n^{-2}m^{-3}n^{3}
To raise a power to another power, multiply the exponents. Multiply -1 and 2 to get -2.
10x+h=10\times 4m^{4}n^{-2}m^{-3}n^{3}
Calculate -2 to the power of 2 and get 4.
10x+h=40m^{4}n^{-2}m^{-3}n^{3}
Multiply 10 and 4 to get 40.
10x+h=40m^{1}n^{-2}n^{3}
To multiply powers of the same base, add their exponents. Add 4 and -3 to get 1.
10x+h=40m^{1}n^{1}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
10x+h=40mn^{1}
Calculate m to the power of 1 and get m.
10x+h=40mn
Calculate n to the power of 1 and get n.
h=40mn-10x
Subtract 10x from both sides.
10x+h=10\left(-2m^{2}n^{-1}\right)^{2}m^{-3}n^{3}
Multiply both sides of the equation by 10.
10x+h=10\left(-2\right)^{2}\left(m^{2}\right)^{2}\left(n^{-1}\right)^{2}m^{-3}n^{3}
Expand \left(-2m^{2}n^{-1}\right)^{2}.
10x+h=10\left(-2\right)^{2}m^{4}\left(n^{-1}\right)^{2}m^{-3}n^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
10x+h=10\left(-2\right)^{2}m^{4}n^{-2}m^{-3}n^{3}
To raise a power to another power, multiply the exponents. Multiply -1 and 2 to get -2.
10x+h=10\times 4m^{4}n^{-2}m^{-3}n^{3}
Calculate -2 to the power of 2 and get 4.
10x+h=40m^{4}n^{-2}m^{-3}n^{3}
Multiply 10 and 4 to get 40.
10x+h=40m^{1}n^{-2}n^{3}
To multiply powers of the same base, add their exponents. Add 4 and -3 to get 1.
10x+h=40m^{1}n^{1}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
10x+h=40mn^{1}
Calculate m to the power of 1 and get m.
10x+h=40mn
Calculate n to the power of 1 and get n.
40mn=10x+h
Swap sides so that all variable terms are on the left hand side.
40nm=10x+h
The equation is in standard form.
\frac{40nm}{40n}=\frac{10x+h}{40n}
Divide both sides by 40n.
m=\frac{10x+h}{40n}
Dividing by 40n undoes the multiplication by 40n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}