Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

4a^{2}\left(x+\frac{b}{2a}\right)^{2}=b^{2}-4ac
Multiply both sides of the equation by 4a^{2}.
4a^{2}\left(\frac{x\times 2a}{2a}+\frac{b}{2a}\right)^{2}=b^{2}-4ac
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2a}{2a}.
4a^{2}\times \left(\frac{x\times 2a+b}{2a}\right)^{2}=b^{2}-4ac
Since \frac{x\times 2a}{2a} and \frac{b}{2a} have the same denominator, add them by adding their numerators.
4a^{2}\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}=b^{2}-4ac
To raise \frac{x\times 2a+b}{2a} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Express 4\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x\times 2a+b\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{2^{2}a^{2}}a^{2}=b^{2}-4ac
Expand \left(2a\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{4a^{2}}a^{2}=b^{2}-4ac
Calculate 2 to the power of 2 and get 4.
\frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2}=b^{2}-4ac
Cancel out 4 in both numerator and denominator.
\frac{\left(4a^{2}x^{2}+4abx+b^{2}\right)a^{2}}{a^{2}}=b^{2}-4ac
Express \frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2} as a single fraction.
4a^{2}x^{2}+4abx+b^{2}=b^{2}-4ac
Cancel out a^{2} in both numerator and denominator.
4a^{2}x^{2}+4abx+b^{2}-b^{2}=-4ac
Subtract b^{2} from both sides.
4a^{2}x^{2}+4abx=-4ac
Combine b^{2} and -b^{2} to get 0.
4abx=-4ac-4a^{2}x^{2}
Subtract 4a^{2}x^{2} from both sides.
4axb=-4a^{2}x^{2}-4ac
The equation is in standard form.
\frac{4axb}{4ax}=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Divide both sides by 4ax.
b=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Dividing by 4ax undoes the multiplication by 4ax.
b=-ax-\frac{c}{x}
Divide -4a\left(c+ax^{2}\right) by 4ax.
4a^{2}\left(x+\frac{b}{2a}\right)^{2}=b^{2}-4ac
Multiply both sides of the equation by 4a^{2}.
4a^{2}\left(\frac{x\times 2a}{2a}+\frac{b}{2a}\right)^{2}=b^{2}-4ac
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2a}{2a}.
4a^{2}\times \left(\frac{x\times 2a+b}{2a}\right)^{2}=b^{2}-4ac
Since \frac{x\times 2a}{2a} and \frac{b}{2a} have the same denominator, add them by adding their numerators.
4a^{2}\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}=b^{2}-4ac
To raise \frac{x\times 2a+b}{2a} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Express 4\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x\times 2a+b\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{2^{2}a^{2}}a^{2}=b^{2}-4ac
Expand \left(2a\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{4a^{2}}a^{2}=b^{2}-4ac
Calculate 2 to the power of 2 and get 4.
\frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2}=b^{2}-4ac
Cancel out 4 in both numerator and denominator.
\frac{\left(4a^{2}x^{2}+4abx+b^{2}\right)a^{2}}{a^{2}}=b^{2}-4ac
Express \frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2} as a single fraction.
4a^{2}x^{2}+4abx+b^{2}=b^{2}-4ac
Cancel out a^{2} in both numerator and denominator.
4a^{2}x^{2}+4abx+b^{2}-b^{2}=-4ac
Subtract b^{2} from both sides.
4a^{2}x^{2}+4abx=-4ac
Combine b^{2} and -b^{2} to get 0.
4abx=-4ac-4a^{2}x^{2}
Subtract 4a^{2}x^{2} from both sides.
4axb=-4a^{2}x^{2}-4ac
The equation is in standard form.
\frac{4axb}{4ax}=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Divide both sides by 4ax.
b=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Dividing by 4ax undoes the multiplication by 4ax.
b=-ax-\frac{c}{x}
Divide -4a\left(c+ax^{2}\right) by 4ax.