Solve for b (complex solution)
\left\{\begin{matrix}b=-ax-\frac{c}{x}\text{, }&x\neq 0\text{ and }a\neq 0\\b\in \mathrm{C}\text{, }&c=0\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-ax-\frac{c}{x}\text{, }&x\neq 0\text{ and }a\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }x=0\text{ and }a\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx+c}{x^{2}}\text{, }&\left(c\neq 0\text{ or }b\neq 0\right)\text{ and }\left(b=0\text{ or }x\neq -\frac{c}{b}\right)\text{ and }x\neq 0\text{ and }c\neq -bx\\a\neq 0\text{, }&c=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
4a^{2}\left(x+\frac{b}{2a}\right)^{2}=b^{2}-4ac
Multiply both sides of the equation by 4a^{2}.
4a^{2}\left(\frac{x\times 2a}{2a}+\frac{b}{2a}\right)^{2}=b^{2}-4ac
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2a}{2a}.
4a^{2}\times \left(\frac{x\times 2a+b}{2a}\right)^{2}=b^{2}-4ac
Since \frac{x\times 2a}{2a} and \frac{b}{2a} have the same denominator, add them by adding their numerators.
4a^{2}\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}=b^{2}-4ac
To raise \frac{x\times 2a+b}{2a} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Express 4\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x\times 2a+b\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{2^{2}a^{2}}a^{2}=b^{2}-4ac
Expand \left(2a\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{4a^{2}}a^{2}=b^{2}-4ac
Calculate 2 to the power of 2 and get 4.
\frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2}=b^{2}-4ac
Cancel out 4 in both numerator and denominator.
\frac{\left(4a^{2}x^{2}+4abx+b^{2}\right)a^{2}}{a^{2}}=b^{2}-4ac
Express \frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2} as a single fraction.
4a^{2}x^{2}+4abx+b^{2}=b^{2}-4ac
Cancel out a^{2} in both numerator and denominator.
4a^{2}x^{2}+4abx+b^{2}-b^{2}=-4ac
Subtract b^{2} from both sides.
4a^{2}x^{2}+4abx=-4ac
Combine b^{2} and -b^{2} to get 0.
4abx=-4ac-4a^{2}x^{2}
Subtract 4a^{2}x^{2} from both sides.
4axb=-4a^{2}x^{2}-4ac
The equation is in standard form.
\frac{4axb}{4ax}=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Divide both sides by 4ax.
b=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Dividing by 4ax undoes the multiplication by 4ax.
b=-ax-\frac{c}{x}
Divide -4a\left(c+ax^{2}\right) by 4ax.
4a^{2}\left(x+\frac{b}{2a}\right)^{2}=b^{2}-4ac
Multiply both sides of the equation by 4a^{2}.
4a^{2}\left(\frac{x\times 2a}{2a}+\frac{b}{2a}\right)^{2}=b^{2}-4ac
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2a}{2a}.
4a^{2}\times \left(\frac{x\times 2a+b}{2a}\right)^{2}=b^{2}-4ac
Since \frac{x\times 2a}{2a} and \frac{b}{2a} have the same denominator, add them by adding their numerators.
4a^{2}\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}=b^{2}-4ac
To raise \frac{x\times 2a+b}{2a} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Express 4\times \frac{\left(x\times 2a+b\right)^{2}}{\left(2a\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{\left(2a\right)^{2}}a^{2}=b^{2}-4ac
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x\times 2a+b\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{2^{2}a^{2}}a^{2}=b^{2}-4ac
Expand \left(2a\right)^{2}.
\frac{4\left(4x^{2}a^{2}+4xab+b^{2}\right)}{4a^{2}}a^{2}=b^{2}-4ac
Calculate 2 to the power of 2 and get 4.
\frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2}=b^{2}-4ac
Cancel out 4 in both numerator and denominator.
\frac{\left(4a^{2}x^{2}+4abx+b^{2}\right)a^{2}}{a^{2}}=b^{2}-4ac
Express \frac{4a^{2}x^{2}+4abx+b^{2}}{a^{2}}a^{2} as a single fraction.
4a^{2}x^{2}+4abx+b^{2}=b^{2}-4ac
Cancel out a^{2} in both numerator and denominator.
4a^{2}x^{2}+4abx+b^{2}-b^{2}=-4ac
Subtract b^{2} from both sides.
4a^{2}x^{2}+4abx=-4ac
Combine b^{2} and -b^{2} to get 0.
4abx=-4ac-4a^{2}x^{2}
Subtract 4a^{2}x^{2} from both sides.
4axb=-4a^{2}x^{2}-4ac
The equation is in standard form.
\frac{4axb}{4ax}=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Divide both sides by 4ax.
b=-\frac{4a\left(ax^{2}+c\right)}{4ax}
Dividing by 4ax undoes the multiplication by 4ax.
b=-ax-\frac{c}{x}
Divide -4a\left(c+ax^{2}\right) by 4ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}