Solve for x
x>-1
Graph
Share
Copied to clipboard
x^{2}-\frac{1}{2}x-\frac{15}{2}<\left(x+1\right)^{2}-6
Use the distributive property to multiply x+\frac{5}{2} by x-3 and combine like terms.
x^{2}-\frac{1}{2}x-\frac{15}{2}<x^{2}+2x+1-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-\frac{1}{2}x-\frac{15}{2}<x^{2}+2x-5
Subtract 6 from 1 to get -5.
x^{2}-\frac{1}{2}x-\frac{15}{2}-x^{2}<2x-5
Subtract x^{2} from both sides.
-\frac{1}{2}x-\frac{15}{2}<2x-5
Combine x^{2} and -x^{2} to get 0.
-\frac{1}{2}x-\frac{15}{2}-2x<-5
Subtract 2x from both sides.
-\frac{5}{2}x-\frac{15}{2}<-5
Combine -\frac{1}{2}x and -2x to get -\frac{5}{2}x.
-\frac{5}{2}x<-5+\frac{15}{2}
Add \frac{15}{2} to both sides.
-\frac{5}{2}x<\frac{5}{2}
Add -5 and \frac{15}{2} to get \frac{5}{2}.
x>\frac{5}{2}\left(-\frac{2}{5}\right)
Multiply both sides by -\frac{2}{5}, the reciprocal of -\frac{5}{2}. Since -\frac{5}{2} is negative, the inequality direction is changed.
x>-1
Multiply \frac{5}{2} and -\frac{2}{5} to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}