Solve for x
x=\frac{4}{5}=0.8
x=0
Graph
Share
Copied to clipboard
6\left(x+\frac{2}{3}\right)\left(x-\frac{3}{2}\right)-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
\left(6x+4\right)\left(x-\frac{3}{2}\right)-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Use the distributive property to multiply 6 by x+\frac{2}{3}.
6x^{2}-5x-6-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Use the distributive property to multiply 6x+4 by x-\frac{3}{2} and combine like terms.
6x^{2}-5x-6-x^{2}+4=2+2x-1-3\left(x+1\right)
To find the opposite of x^{2}-4, find the opposite of each term.
5x^{2}-5x-6+4=2+2x-1-3\left(x+1\right)
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-5x-2=2+2x-1-3\left(x+1\right)
Add -6 and 4 to get -2.
5x^{2}-5x-2=1+2x-3\left(x+1\right)
Subtract 1 from 2 to get 1.
5x^{2}-5x-2=1+2x-3x-3
Use the distributive property to multiply -3 by x+1.
5x^{2}-5x-2=1-x-3
Combine 2x and -3x to get -x.
5x^{2}-5x-2=-2-x
Subtract 3 from 1 to get -2.
5x^{2}-5x-2-\left(-2\right)=-x
Subtract -2 from both sides.
5x^{2}-5x-2+2=-x
The opposite of -2 is 2.
5x^{2}-5x-2+2+x=0
Add x to both sides.
5x^{2}-5x+x=0
Add -2 and 2 to get 0.
5x^{2}-4x=0
Combine -5x and x to get -4x.
x\left(5x-4\right)=0
Factor out x.
x=0 x=\frac{4}{5}
To find equation solutions, solve x=0 and 5x-4=0.
6\left(x+\frac{2}{3}\right)\left(x-\frac{3}{2}\right)-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
\left(6x+4\right)\left(x-\frac{3}{2}\right)-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Use the distributive property to multiply 6 by x+\frac{2}{3}.
6x^{2}-5x-6-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Use the distributive property to multiply 6x+4 by x-\frac{3}{2} and combine like terms.
6x^{2}-5x-6-x^{2}+4=2+2x-1-3\left(x+1\right)
To find the opposite of x^{2}-4, find the opposite of each term.
5x^{2}-5x-6+4=2+2x-1-3\left(x+1\right)
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-5x-2=2+2x-1-3\left(x+1\right)
Add -6 and 4 to get -2.
5x^{2}-5x-2=1+2x-3\left(x+1\right)
Subtract 1 from 2 to get 1.
5x^{2}-5x-2=1+2x-3x-3
Use the distributive property to multiply -3 by x+1.
5x^{2}-5x-2=1-x-3
Combine 2x and -3x to get -x.
5x^{2}-5x-2=-2-x
Subtract 3 from 1 to get -2.
5x^{2}-5x-2-\left(-2\right)=-x
Subtract -2 from both sides.
5x^{2}-5x-2+2=-x
The opposite of -2 is 2.
5x^{2}-5x-2+2+x=0
Add x to both sides.
5x^{2}-5x+x=0
Add -2 and 2 to get 0.
5x^{2}-4x=0
Combine -5x and x to get -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\times 5}
Take the square root of \left(-4\right)^{2}.
x=\frac{4±4}{2\times 5}
The opposite of -4 is 4.
x=\frac{4±4}{10}
Multiply 2 times 5.
x=\frac{8}{10}
Now solve the equation x=\frac{4±4}{10} when ± is plus. Add 4 to 4.
x=\frac{4}{5}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
x=\frac{0}{10}
Now solve the equation x=\frac{4±4}{10} when ± is minus. Subtract 4 from 4.
x=0
Divide 0 by 10.
x=\frac{4}{5} x=0
The equation is now solved.
6\left(x+\frac{2}{3}\right)\left(x-\frac{3}{2}\right)-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
\left(6x+4\right)\left(x-\frac{3}{2}\right)-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Use the distributive property to multiply 6 by x+\frac{2}{3}.
6x^{2}-5x-6-\left(x^{2}-4\right)=2+2x-1-3\left(x+1\right)
Use the distributive property to multiply 6x+4 by x-\frac{3}{2} and combine like terms.
6x^{2}-5x-6-x^{2}+4=2+2x-1-3\left(x+1\right)
To find the opposite of x^{2}-4, find the opposite of each term.
5x^{2}-5x-6+4=2+2x-1-3\left(x+1\right)
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-5x-2=2+2x-1-3\left(x+1\right)
Add -6 and 4 to get -2.
5x^{2}-5x-2=1+2x-3\left(x+1\right)
Subtract 1 from 2 to get 1.
5x^{2}-5x-2=1+2x-3x-3
Use the distributive property to multiply -3 by x+1.
5x^{2}-5x-2=1-x-3
Combine 2x and -3x to get -x.
5x^{2}-5x-2=-2-x
Subtract 3 from 1 to get -2.
5x^{2}-5x-2+x=-2
Add x to both sides.
5x^{2}-4x-2=-2
Combine -5x and x to get -4x.
5x^{2}-4x=-2+2
Add 2 to both sides.
5x^{2}-4x=0
Add -2 and 2 to get 0.
\frac{5x^{2}-4x}{5}=\frac{0}{5}
Divide both sides by 5.
x^{2}-\frac{4}{5}x=\frac{0}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{4}{5}x=0
Divide 0 by 5.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{2}{5}\right)^{2}=\frac{4}{25}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{2}{5} x-\frac{2}{5}=-\frac{2}{5}
Simplify.
x=\frac{4}{5} x=0
Add \frac{2}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}