Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{xx}{x}+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{xx+1}{x}\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1}{x}\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Do the multiplications in xx+1.
\frac{x^{2}+1}{x}\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{2}+1}{x}\times \frac{xx-1}{x}\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Do the multiplications in xx-1.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\left(\frac{\left(x^{2}-1\right)x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-1 times \frac{x^{2}}{x^{2}}.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{\left(x^{2}-1\right)x^{2}+1}{x^{2}}\left(x^{2}+\frac{1}{x^{2}}+1\right)
Since \frac{\left(x^{2}-1\right)x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\left(x^{2}+\frac{1}{x^{2}}+1\right)
Do the multiplications in \left(x^{2}-1\right)x^{2}+1.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\left(\frac{\left(x^{2}+1\right)x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+1 times \frac{x^{2}}{x^{2}}.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\times \frac{\left(x^{2}+1\right)x^{2}+1}{x^{2}}
Since \frac{\left(x^{2}+1\right)x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\times \frac{x^{4}+x^{2}+1}{x^{2}}
Do the multiplications in \left(x^{2}+1\right)x^{2}+1.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)}{xx}\times \frac{x^{4}-x^{2}+1}{x^{2}}\times \frac{x^{4}+x^{2}+1}{x^{2}}
Multiply \frac{x^{2}+1}{x} times \frac{x^{2}-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)}{xxx^{2}}\times \frac{x^{4}+x^{2}+1}{x^{2}}
Multiply \frac{\left(x^{2}+1\right)\left(x^{2}-1\right)}{xx} times \frac{x^{4}-x^{2}+1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{xxx^{2}x^{2}}
Multiply \frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)}{xxx^{2}} times \frac{x^{4}+x^{2}+1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{2}x^{2}x^{2}}
Multiply x and x to get x^{2}.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{4}x^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{6}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(x^{4}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{6}}
Use the distributive property to multiply x^{2}+1 by x^{2}-1 and combine like terms.
\frac{\left(x^{8}-x^{6}+x^{2}-1\right)\left(x^{4}+x^{2}+1\right)}{x^{6}}
Use the distributive property to multiply x^{4}-1 by x^{4}-x^{2}+1 and combine like terms.
\frac{x^{12}-1}{x^{6}}
Use the distributive property to multiply x^{8}-x^{6}+x^{2}-1 by x^{4}+x^{2}+1 and combine like terms.
\left(\frac{xx}{x}+\frac{1}{x}\right)\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{xx+1}{x}\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1}{x}\left(x-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Do the multiplications in xx+1.
\frac{x^{2}+1}{x}\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{2}+1}{x}\times \frac{xx-1}{x}\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\left(x^{2}+\frac{1}{x^{2}}-1\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
Do the multiplications in xx-1.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\left(\frac{\left(x^{2}-1\right)x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)\left(x^{2}+\frac{1}{x^{2}}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-1 times \frac{x^{2}}{x^{2}}.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{\left(x^{2}-1\right)x^{2}+1}{x^{2}}\left(x^{2}+\frac{1}{x^{2}}+1\right)
Since \frac{\left(x^{2}-1\right)x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\left(x^{2}+\frac{1}{x^{2}}+1\right)
Do the multiplications in \left(x^{2}-1\right)x^{2}+1.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\left(\frac{\left(x^{2}+1\right)x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+1 times \frac{x^{2}}{x^{2}}.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\times \frac{\left(x^{2}+1\right)x^{2}+1}{x^{2}}
Since \frac{\left(x^{2}+1\right)x^{2}}{x^{2}} and \frac{1}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+1}{x}\times \frac{x^{2}-1}{x}\times \frac{x^{4}-x^{2}+1}{x^{2}}\times \frac{x^{4}+x^{2}+1}{x^{2}}
Do the multiplications in \left(x^{2}+1\right)x^{2}+1.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)}{xx}\times \frac{x^{4}-x^{2}+1}{x^{2}}\times \frac{x^{4}+x^{2}+1}{x^{2}}
Multiply \frac{x^{2}+1}{x} times \frac{x^{2}-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)}{xxx^{2}}\times \frac{x^{4}+x^{2}+1}{x^{2}}
Multiply \frac{\left(x^{2}+1\right)\left(x^{2}-1\right)}{xx} times \frac{x^{4}-x^{2}+1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{xxx^{2}x^{2}}
Multiply \frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)}{xxx^{2}} times \frac{x^{4}+x^{2}+1}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{2}x^{2}x^{2}}
Multiply x and x to get x^{2}.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{4}x^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{6}}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{\left(x^{4}-1\right)\left(x^{4}-x^{2}+1\right)\left(x^{4}+x^{2}+1\right)}{x^{6}}
Use the distributive property to multiply x^{2}+1 by x^{2}-1 and combine like terms.
\frac{\left(x^{8}-x^{6}+x^{2}-1\right)\left(x^{4}+x^{2}+1\right)}{x^{6}}
Use the distributive property to multiply x^{4}-1 by x^{4}-x^{2}+1 and combine like terms.
\frac{x^{12}-1}{x^{6}}
Use the distributive property to multiply x^{8}-x^{6}+x^{2}-1 by x^{4}+x^{2}+1 and combine like terms.