Evaluate
-\frac{3x^{2}}{4}+\frac{29x}{16}+\frac{1}{2}
Expand
-\frac{3x^{2}}{4}+\frac{29x}{16}+\frac{1}{2}
Graph
Share
Copied to clipboard
x\left(-\frac{3}{4}\right)x+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Apply the distributive property by multiplying each term of x+\frac{1}{4} by each term of -\frac{3}{4}x+2.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Multiply x and x to get x^{2}.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1\left(-3\right)}{4\times 4}x+\frac{1}{4}\times 2
Multiply \frac{1}{4} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{-3}{16}x+\frac{1}{4}\times 2
Do the multiplications in the fraction \frac{1\left(-3\right)}{4\times 4}.
x^{2}\left(-\frac{3}{4}\right)+2x-\frac{3}{16}x+\frac{1}{4}\times 2
Fraction \frac{-3}{16} can be rewritten as -\frac{3}{16} by extracting the negative sign.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{4}\times 2
Combine 2x and -\frac{3}{16}x to get \frac{29}{16}x.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{2}{4}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x\left(-\frac{3}{4}\right)x+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Apply the distributive property by multiplying each term of x+\frac{1}{4} by each term of -\frac{3}{4}x+2.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1}{4}\left(-\frac{3}{4}\right)x+\frac{1}{4}\times 2
Multiply x and x to get x^{2}.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{1\left(-3\right)}{4\times 4}x+\frac{1}{4}\times 2
Multiply \frac{1}{4} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
x^{2}\left(-\frac{3}{4}\right)+2x+\frac{-3}{16}x+\frac{1}{4}\times 2
Do the multiplications in the fraction \frac{1\left(-3\right)}{4\times 4}.
x^{2}\left(-\frac{3}{4}\right)+2x-\frac{3}{16}x+\frac{1}{4}\times 2
Fraction \frac{-3}{16} can be rewritten as -\frac{3}{16} by extracting the negative sign.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{4}\times 2
Combine 2x and -\frac{3}{16}x to get \frac{29}{16}x.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{2}{4}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
x^{2}\left(-\frac{3}{4}\right)+\frac{29}{16}x+\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}