Evaluate
3w+42-\frac{96}{w}
Expand
3w+42-\frac{96}{w}
Share
Copied to clipboard
\left(w-2\right)\left(\frac{48}{w}+\frac{3w}{w}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{w}{w}.
\left(w-2\right)\times \frac{48+3w}{w}
Since \frac{48}{w} and \frac{3w}{w} have the same denominator, add them by adding their numerators.
\frac{\left(w-2\right)\left(48+3w\right)}{w}
Express \left(w-2\right)\times \frac{48+3w}{w} as a single fraction.
\frac{48w+3w^{2}-96-6w}{w}
Apply the distributive property by multiplying each term of w-2 by each term of 48+3w.
\frac{42w+3w^{2}-96}{w}
Combine 48w and -6w to get 42w.
\left(w-2\right)\left(\frac{48}{w}+\frac{3w}{w}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{w}{w}.
\left(w-2\right)\times \frac{48+3w}{w}
Since \frac{48}{w} and \frac{3w}{w} have the same denominator, add them by adding their numerators.
\frac{\left(w-2\right)\left(48+3w\right)}{w}
Express \left(w-2\right)\times \frac{48+3w}{w} as a single fraction.
\frac{48w+3w^{2}-96-6w}{w}
Apply the distributive property by multiplying each term of w-2 by each term of 48+3w.
\frac{42w+3w^{2}-96}{w}
Combine 48w and -6w to get 42w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}