Evaluate
5\left(w-2\right)\left(w+1\right)
Expand
5w^{2}-5w-10
Share
Copied to clipboard
w^{2}-2^{2}+\left(4w+3\right)\left(w-2\right)
Consider \left(w+2\right)\left(w-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
w^{2}-4+\left(4w+3\right)\left(w-2\right)
Calculate 2 to the power of 2 and get 4.
w^{2}-4+4w^{2}-8w+3w-6
Apply the distributive property by multiplying each term of 4w+3 by each term of w-2.
w^{2}-4+4w^{2}-5w-6
Combine -8w and 3w to get -5w.
5w^{2}-4-5w-6
Combine w^{2} and 4w^{2} to get 5w^{2}.
5w^{2}-10-5w
Subtract 6 from -4 to get -10.
w^{2}-2^{2}+\left(4w+3\right)\left(w-2\right)
Consider \left(w+2\right)\left(w-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
w^{2}-4+\left(4w+3\right)\left(w-2\right)
Calculate 2 to the power of 2 and get 4.
w^{2}-4+4w^{2}-8w+3w-6
Apply the distributive property by multiplying each term of 4w+3 by each term of w-2.
w^{2}-4+4w^{2}-5w-6
Combine -8w and 3w to get -5w.
5w^{2}-4-5w-6
Combine w^{2} and 4w^{2} to get 5w^{2}.
5w^{2}-10-5w
Subtract 6 from -4 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}