Evaluate
-\frac{9v^{2}}{8}
Expand
-\frac{9v^{2}}{8}
Share
Copied to clipboard
v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}-\left(\frac{1}{2}v-1\right)^{3}-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(v-\frac{1}{2}\right)^{3}.
v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}-\left(\frac{1}{8}v^{3}-\frac{3}{4}v^{2}+\frac{3}{2}v-1\right)-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(\frac{1}{2}v-1\right)^{3}.
v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}-\frac{1}{8}v^{3}+\frac{3}{4}v^{2}-\frac{3}{2}v+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
To find the opposite of \frac{1}{8}v^{3}-\frac{3}{4}v^{2}+\frac{3}{2}v-1, find the opposite of each term.
\frac{7}{8}v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}+\frac{3}{4}v^{2}-\frac{3}{2}v+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Combine v^{3} and -\frac{1}{8}v^{3} to get \frac{7}{8}v^{3}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}+\frac{3}{4}v-\frac{1}{8}-\frac{3}{2}v+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Combine -\frac{3}{2}v^{2} and \frac{3}{4}v^{2} to get -\frac{3}{4}v^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v-\frac{1}{8}+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Combine \frac{3}{4}v and -\frac{3}{2}v to get -\frac{3}{4}v.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Add -\frac{1}{8} and 1 to get \frac{7}{8}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(v-1\right)^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\left(\frac{1}{4}v^{2}+\frac{1}{8}v+\frac{1}{64}\right)-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}v+\frac{1}{8}\right)^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{1}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
To find the opposite of \frac{1}{4}v^{2}+\frac{1}{8}v+\frac{1}{64}, find the opposite of each term.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{1}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}-\left(v^{2}-\frac{1}{64}\right)
Consider \left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{8}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{1}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}-v^{2}+\frac{1}{64}
To find the opposite of v^{2}-\frac{1}{64}, find the opposite of each term.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{5}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}+\frac{1}{64}
Combine -\frac{1}{4}v^{2} and -v^{2} to get -\frac{5}{4}v^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{5}{4}v^{2}-\frac{1}{8}v
Add -\frac{1}{64} and \frac{1}{64} to get 0.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}+\left(-\frac{7}{8}v-\frac{7}{8}\right)\left(v^{2}-2v+1\right)-\frac{5}{4}v^{2}-\frac{1}{8}v
Use the distributive property to multiply -\frac{7}{8} by v+1.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}v^{3}+\frac{7}{8}v^{2}+\frac{7}{8}v-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Use the distributive property to multiply -\frac{7}{8}v-\frac{7}{8} by v^{2}-2v+1 and combine like terms.
-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}+\frac{7}{8}v^{2}+\frac{7}{8}v-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Combine \frac{7}{8}v^{3} and -\frac{7}{8}v^{3} to get 0.
\frac{1}{8}v^{2}-\frac{3}{4}v+\frac{7}{8}+\frac{7}{8}v-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Combine -\frac{3}{4}v^{2} and \frac{7}{8}v^{2} to get \frac{1}{8}v^{2}.
\frac{1}{8}v^{2}+\frac{1}{8}v+\frac{7}{8}-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Combine -\frac{3}{4}v and \frac{7}{8}v to get \frac{1}{8}v.
\frac{1}{8}v^{2}+\frac{1}{8}v-\frac{5}{4}v^{2}-\frac{1}{8}v
Subtract \frac{7}{8} from \frac{7}{8} to get 0.
-\frac{9}{8}v^{2}+\frac{1}{8}v-\frac{1}{8}v
Combine \frac{1}{8}v^{2} and -\frac{5}{4}v^{2} to get -\frac{9}{8}v^{2}.
-\frac{9}{8}v^{2}
Combine \frac{1}{8}v and -\frac{1}{8}v to get 0.
v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}-\left(\frac{1}{2}v-1\right)^{3}-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(v-\frac{1}{2}\right)^{3}.
v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}-\left(\frac{1}{8}v^{3}-\frac{3}{4}v^{2}+\frac{3}{2}v-1\right)-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(\frac{1}{2}v-1\right)^{3}.
v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}-\frac{1}{8}v^{3}+\frac{3}{4}v^{2}-\frac{3}{2}v+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
To find the opposite of \frac{1}{8}v^{3}-\frac{3}{4}v^{2}+\frac{3}{2}v-1, find the opposite of each term.
\frac{7}{8}v^{3}-\frac{3}{2}v^{2}+\frac{3}{4}v-\frac{1}{8}+\frac{3}{4}v^{2}-\frac{3}{2}v+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Combine v^{3} and -\frac{1}{8}v^{3} to get \frac{7}{8}v^{3}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}+\frac{3}{4}v-\frac{1}{8}-\frac{3}{2}v+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Combine -\frac{3}{2}v^{2} and \frac{3}{4}v^{2} to get -\frac{3}{4}v^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v-\frac{1}{8}+1-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Combine \frac{3}{4}v and -\frac{3}{2}v to get -\frac{3}{4}v.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v-1\right)^{2}-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Add -\frac{1}{8} and 1 to get \frac{7}{8}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\left(\frac{1}{2}v+\frac{1}{8}\right)^{2}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(v-1\right)^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\left(\frac{1}{4}v^{2}+\frac{1}{8}v+\frac{1}{64}\right)-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}v+\frac{1}{8}\right)^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{1}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}-\left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right)
To find the opposite of \frac{1}{4}v^{2}+\frac{1}{8}v+\frac{1}{64}, find the opposite of each term.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{1}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}-\left(v^{2}-\frac{1}{64}\right)
Consider \left(v-\frac{1}{8}\right)\left(v+\frac{1}{8}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{8}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{1}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}-v^{2}+\frac{1}{64}
To find the opposite of v^{2}-\frac{1}{64}, find the opposite of each term.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{5}{4}v^{2}-\frac{1}{8}v-\frac{1}{64}+\frac{1}{64}
Combine -\frac{1}{4}v^{2} and -v^{2} to get -\frac{5}{4}v^{2}.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}\left(v+1\right)\left(v^{2}-2v+1\right)-\frac{5}{4}v^{2}-\frac{1}{8}v
Add -\frac{1}{64} and \frac{1}{64} to get 0.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}+\left(-\frac{7}{8}v-\frac{7}{8}\right)\left(v^{2}-2v+1\right)-\frac{5}{4}v^{2}-\frac{1}{8}v
Use the distributive property to multiply -\frac{7}{8} by v+1.
\frac{7}{8}v^{3}-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}-\frac{7}{8}v^{3}+\frac{7}{8}v^{2}+\frac{7}{8}v-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Use the distributive property to multiply -\frac{7}{8}v-\frac{7}{8} by v^{2}-2v+1 and combine like terms.
-\frac{3}{4}v^{2}-\frac{3}{4}v+\frac{7}{8}+\frac{7}{8}v^{2}+\frac{7}{8}v-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Combine \frac{7}{8}v^{3} and -\frac{7}{8}v^{3} to get 0.
\frac{1}{8}v^{2}-\frac{3}{4}v+\frac{7}{8}+\frac{7}{8}v-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Combine -\frac{3}{4}v^{2} and \frac{7}{8}v^{2} to get \frac{1}{8}v^{2}.
\frac{1}{8}v^{2}+\frac{1}{8}v+\frac{7}{8}-\frac{7}{8}-\frac{5}{4}v^{2}-\frac{1}{8}v
Combine -\frac{3}{4}v and \frac{7}{8}v to get \frac{1}{8}v.
\frac{1}{8}v^{2}+\frac{1}{8}v-\frac{5}{4}v^{2}-\frac{1}{8}v
Subtract \frac{7}{8} from \frac{7}{8} to get 0.
-\frac{9}{8}v^{2}+\frac{1}{8}v-\frac{1}{8}v
Combine \frac{1}{8}v^{2} and -\frac{5}{4}v^{2} to get -\frac{9}{8}v^{2}.
-\frac{9}{8}v^{2}
Combine \frac{1}{8}v and -\frac{1}{8}v to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}