( u - y ) ( d u + d y ) = d u - d y
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&u=y\text{ or }u=1-y\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&u=y\text{ or }u=1-y\end{matrix}\right.
Solve for u (complex solution)
\left\{\begin{matrix}\\u=y\text{; }u=1-y\text{, }&\text{unconditionally}\\u\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for u
\left\{\begin{matrix}\\u=y\text{; }u=1-y\text{, }&\text{unconditionally}\\u\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
du^{2}-dy^{2}=du-dy
Use the distributive property to multiply u-y by du+dy and combine like terms.
du^{2}-dy^{2}-du=-dy
Subtract du from both sides.
du^{2}-dy^{2}-du+dy=0
Add dy to both sides.
\left(u^{2}-y^{2}-u+y\right)d=0
Combine all terms containing d.
\left(-y^{2}+y+u^{2}-u\right)d=0
The equation is in standard form.
d=0
Divide 0 by u^{2}-y^{2}-u+y.
du^{2}-dy^{2}=du-dy
Use the distributive property to multiply u-y by du+dy and combine like terms.
du^{2}-dy^{2}-du=-dy
Subtract du from both sides.
du^{2}-dy^{2}-du+dy=0
Add dy to both sides.
\left(u^{2}-y^{2}-u+y\right)d=0
Combine all terms containing d.
\left(-y^{2}+y+u^{2}-u\right)d=0
The equation is in standard form.
d=0
Divide 0 by u^{2}-y^{2}-u+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}