Solve for u
u=-6
u=5
Share
Copied to clipboard
u^{2}-6u+9=2u^{2}-5u-21
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(u-3\right)^{2}.
u^{2}-6u+9-2u^{2}=-5u-21
Subtract 2u^{2} from both sides.
-u^{2}-6u+9=-5u-21
Combine u^{2} and -2u^{2} to get -u^{2}.
-u^{2}-6u+9+5u=-21
Add 5u to both sides.
-u^{2}-u+9=-21
Combine -6u and 5u to get -u.
-u^{2}-u+9+21=0
Add 21 to both sides.
-u^{2}-u+30=0
Add 9 and 21 to get 30.
a+b=-1 ab=-30=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -u^{2}+au+bu+30. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=5 b=-6
The solution is the pair that gives sum -1.
\left(-u^{2}+5u\right)+\left(-6u+30\right)
Rewrite -u^{2}-u+30 as \left(-u^{2}+5u\right)+\left(-6u+30\right).
u\left(-u+5\right)+6\left(-u+5\right)
Factor out u in the first and 6 in the second group.
\left(-u+5\right)\left(u+6\right)
Factor out common term -u+5 by using distributive property.
u=5 u=-6
To find equation solutions, solve -u+5=0 and u+6=0.
u^{2}-6u+9=2u^{2}-5u-21
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(u-3\right)^{2}.
u^{2}-6u+9-2u^{2}=-5u-21
Subtract 2u^{2} from both sides.
-u^{2}-6u+9=-5u-21
Combine u^{2} and -2u^{2} to get -u^{2}.
-u^{2}-6u+9+5u=-21
Add 5u to both sides.
-u^{2}-u+9=-21
Combine -6u and 5u to get -u.
-u^{2}-u+9+21=0
Add 21 to both sides.
-u^{2}-u+30=0
Add 9 and 21 to get 30.
u=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 30}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-1\right)±\sqrt{1+4\times 30}}{2\left(-1\right)}
Multiply -4 times -1.
u=\frac{-\left(-1\right)±\sqrt{1+120}}{2\left(-1\right)}
Multiply 4 times 30.
u=\frac{-\left(-1\right)±\sqrt{121}}{2\left(-1\right)}
Add 1 to 120.
u=\frac{-\left(-1\right)±11}{2\left(-1\right)}
Take the square root of 121.
u=\frac{1±11}{2\left(-1\right)}
The opposite of -1 is 1.
u=\frac{1±11}{-2}
Multiply 2 times -1.
u=\frac{12}{-2}
Now solve the equation u=\frac{1±11}{-2} when ± is plus. Add 1 to 11.
u=-6
Divide 12 by -2.
u=-\frac{10}{-2}
Now solve the equation u=\frac{1±11}{-2} when ± is minus. Subtract 11 from 1.
u=5
Divide -10 by -2.
u=-6 u=5
The equation is now solved.
u^{2}-6u+9=2u^{2}-5u-21
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(u-3\right)^{2}.
u^{2}-6u+9-2u^{2}=-5u-21
Subtract 2u^{2} from both sides.
-u^{2}-6u+9=-5u-21
Combine u^{2} and -2u^{2} to get -u^{2}.
-u^{2}-6u+9+5u=-21
Add 5u to both sides.
-u^{2}-u+9=-21
Combine -6u and 5u to get -u.
-u^{2}-u=-21-9
Subtract 9 from both sides.
-u^{2}-u=-30
Subtract 9 from -21 to get -30.
\frac{-u^{2}-u}{-1}=-\frac{30}{-1}
Divide both sides by -1.
u^{2}+\left(-\frac{1}{-1}\right)u=-\frac{30}{-1}
Dividing by -1 undoes the multiplication by -1.
u^{2}+u=-\frac{30}{-1}
Divide -1 by -1.
u^{2}+u=30
Divide -30 by -1.
u^{2}+u+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}+u+\frac{1}{4}=30+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
u^{2}+u+\frac{1}{4}=\frac{121}{4}
Add 30 to \frac{1}{4}.
\left(u+\frac{1}{2}\right)^{2}=\frac{121}{4}
Factor u^{2}+u+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
u+\frac{1}{2}=\frac{11}{2} u+\frac{1}{2}=-\frac{11}{2}
Simplify.
u=5 u=-6
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}