Solve for u
u=\frac{-\sqrt{191}i-5}{4}\approx -1.25-3.45506874i
u=\frac{-5+\sqrt{191}i}{4}\approx -1.25+3.45506874i
Share
Copied to clipboard
u-2-2u^{2}=6u+25
Subtract 2u^{2} from both sides.
u-2-2u^{2}-6u=25
Subtract 6u from both sides.
-5u-2-2u^{2}=25
Combine u and -6u to get -5u.
-5u-2-2u^{2}-25=0
Subtract 25 from both sides.
-5u-27-2u^{2}=0
Subtract 25 from -2 to get -27.
-2u^{2}-5u-27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2\right)\left(-27\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -5 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-5\right)±\sqrt{25-4\left(-2\right)\left(-27\right)}}{2\left(-2\right)}
Square -5.
u=\frac{-\left(-5\right)±\sqrt{25+8\left(-27\right)}}{2\left(-2\right)}
Multiply -4 times -2.
u=\frac{-\left(-5\right)±\sqrt{25-216}}{2\left(-2\right)}
Multiply 8 times -27.
u=\frac{-\left(-5\right)±\sqrt{-191}}{2\left(-2\right)}
Add 25 to -216.
u=\frac{-\left(-5\right)±\sqrt{191}i}{2\left(-2\right)}
Take the square root of -191.
u=\frac{5±\sqrt{191}i}{2\left(-2\right)}
The opposite of -5 is 5.
u=\frac{5±\sqrt{191}i}{-4}
Multiply 2 times -2.
u=\frac{5+\sqrt{191}i}{-4}
Now solve the equation u=\frac{5±\sqrt{191}i}{-4} when ± is plus. Add 5 to i\sqrt{191}.
u=\frac{-\sqrt{191}i-5}{4}
Divide 5+i\sqrt{191} by -4.
u=\frac{-\sqrt{191}i+5}{-4}
Now solve the equation u=\frac{5±\sqrt{191}i}{-4} when ± is minus. Subtract i\sqrt{191} from 5.
u=\frac{-5+\sqrt{191}i}{4}
Divide 5-i\sqrt{191} by -4.
u=\frac{-\sqrt{191}i-5}{4} u=\frac{-5+\sqrt{191}i}{4}
The equation is now solved.
u-2-2u^{2}=6u+25
Subtract 2u^{2} from both sides.
u-2-2u^{2}-6u=25
Subtract 6u from both sides.
-5u-2-2u^{2}=25
Combine u and -6u to get -5u.
-5u-2u^{2}=25+2
Add 2 to both sides.
-5u-2u^{2}=27
Add 25 and 2 to get 27.
-2u^{2}-5u=27
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2u^{2}-5u}{-2}=\frac{27}{-2}
Divide both sides by -2.
u^{2}+\left(-\frac{5}{-2}\right)u=\frac{27}{-2}
Dividing by -2 undoes the multiplication by -2.
u^{2}+\frac{5}{2}u=\frac{27}{-2}
Divide -5 by -2.
u^{2}+\frac{5}{2}u=-\frac{27}{2}
Divide 27 by -2.
u^{2}+\frac{5}{2}u+\left(\frac{5}{4}\right)^{2}=-\frac{27}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}+\frac{5}{2}u+\frac{25}{16}=-\frac{27}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
u^{2}+\frac{5}{2}u+\frac{25}{16}=-\frac{191}{16}
Add -\frac{27}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(u+\frac{5}{4}\right)^{2}=-\frac{191}{16}
Factor u^{2}+\frac{5}{2}u+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{5}{4}\right)^{2}}=\sqrt{-\frac{191}{16}}
Take the square root of both sides of the equation.
u+\frac{5}{4}=\frac{\sqrt{191}i}{4} u+\frac{5}{4}=-\frac{\sqrt{191}i}{4}
Simplify.
u=\frac{-5+\sqrt{191}i}{4} u=\frac{-\sqrt{191}i-5}{4}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}