Solve for t
t=-\frac{3}{16}=-0.1875
Share
Copied to clipboard
t^{2}-8t+16=\left(t+4\right)^{2}+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+16+3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(t+4\right)^{2}.
t^{2}-8t+16=t^{2}+8t+19
Add 16 and 3 to get 19.
t^{2}-8t+16-t^{2}=8t+19
Subtract t^{2} from both sides.
-8t+16=8t+19
Combine t^{2} and -t^{2} to get 0.
-8t+16-8t=19
Subtract 8t from both sides.
-16t+16=19
Combine -8t and -8t to get -16t.
-16t=19-16
Subtract 16 from both sides.
-16t=3
Subtract 16 from 19 to get 3.
t=\frac{3}{-16}
Divide both sides by -16.
t=-\frac{3}{16}
Fraction \frac{3}{-16} can be rewritten as -\frac{3}{16} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}