Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}-4t+4+\left(2t-8\right)^{2}+80=\left(t-6\right)^{2}+t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
t^{2}-4t+4+4t^{2}-32t+64+80=\left(t-6\right)^{2}+t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2t-8\right)^{2}.
5t^{2}-4t+4-32t+64+80=\left(t-6\right)^{2}+t^{2}
Combine t^{2} and 4t^{2} to get 5t^{2}.
5t^{2}-36t+4+64+80=\left(t-6\right)^{2}+t^{2}
Combine -4t and -32t to get -36t.
5t^{2}-36t+68+80=\left(t-6\right)^{2}+t^{2}
Add 4 and 64 to get 68.
5t^{2}-36t+148=\left(t-6\right)^{2}+t^{2}
Add 68 and 80 to get 148.
5t^{2}-36t+148=t^{2}-12t+36+t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-6\right)^{2}.
5t^{2}-36t+148=2t^{2}-12t+36
Combine t^{2} and t^{2} to get 2t^{2}.
5t^{2}-36t+148-2t^{2}=-12t+36
Subtract 2t^{2} from both sides.
3t^{2}-36t+148=-12t+36
Combine 5t^{2} and -2t^{2} to get 3t^{2}.
3t^{2}-36t+148+12t=36
Add 12t to both sides.
3t^{2}-24t+148=36
Combine -36t and 12t to get -24t.
3t^{2}-24t+148-36=0
Subtract 36 from both sides.
3t^{2}-24t+112=0
Subtract 36 from 148 to get 112.
t=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 3\times 112}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -24 for b, and 112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-24\right)±\sqrt{576-4\times 3\times 112}}{2\times 3}
Square -24.
t=\frac{-\left(-24\right)±\sqrt{576-12\times 112}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-24\right)±\sqrt{576-1344}}{2\times 3}
Multiply -12 times 112.
t=\frac{-\left(-24\right)±\sqrt{-768}}{2\times 3}
Add 576 to -1344.
t=\frac{-\left(-24\right)±16\sqrt{3}i}{2\times 3}
Take the square root of -768.
t=\frac{24±16\sqrt{3}i}{2\times 3}
The opposite of -24 is 24.
t=\frac{24±16\sqrt{3}i}{6}
Multiply 2 times 3.
t=\frac{24+16\sqrt{3}i}{6}
Now solve the equation t=\frac{24±16\sqrt{3}i}{6} when ± is plus. Add 24 to 16i\sqrt{3}.
t=\frac{8\sqrt{3}i}{3}+4
Divide 24+16i\sqrt{3} by 6.
t=\frac{-16\sqrt{3}i+24}{6}
Now solve the equation t=\frac{24±16\sqrt{3}i}{6} when ± is minus. Subtract 16i\sqrt{3} from 24.
t=-\frac{8\sqrt{3}i}{3}+4
Divide 24-16i\sqrt{3} by 6.
t=\frac{8\sqrt{3}i}{3}+4 t=-\frac{8\sqrt{3}i}{3}+4
The equation is now solved.
t^{2}-4t+4+\left(2t-8\right)^{2}+80=\left(t-6\right)^{2}+t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
t^{2}-4t+4+4t^{2}-32t+64+80=\left(t-6\right)^{2}+t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2t-8\right)^{2}.
5t^{2}-4t+4-32t+64+80=\left(t-6\right)^{2}+t^{2}
Combine t^{2} and 4t^{2} to get 5t^{2}.
5t^{2}-36t+4+64+80=\left(t-6\right)^{2}+t^{2}
Combine -4t and -32t to get -36t.
5t^{2}-36t+68+80=\left(t-6\right)^{2}+t^{2}
Add 4 and 64 to get 68.
5t^{2}-36t+148=\left(t-6\right)^{2}+t^{2}
Add 68 and 80 to get 148.
5t^{2}-36t+148=t^{2}-12t+36+t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-6\right)^{2}.
5t^{2}-36t+148=2t^{2}-12t+36
Combine t^{2} and t^{2} to get 2t^{2}.
5t^{2}-36t+148-2t^{2}=-12t+36
Subtract 2t^{2} from both sides.
3t^{2}-36t+148=-12t+36
Combine 5t^{2} and -2t^{2} to get 3t^{2}.
3t^{2}-36t+148+12t=36
Add 12t to both sides.
3t^{2}-24t+148=36
Combine -36t and 12t to get -24t.
3t^{2}-24t=36-148
Subtract 148 from both sides.
3t^{2}-24t=-112
Subtract 148 from 36 to get -112.
\frac{3t^{2}-24t}{3}=-\frac{112}{3}
Divide both sides by 3.
t^{2}+\left(-\frac{24}{3}\right)t=-\frac{112}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-8t=-\frac{112}{3}
Divide -24 by 3.
t^{2}-8t+\left(-4\right)^{2}=-\frac{112}{3}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-8t+16=-\frac{112}{3}+16
Square -4.
t^{2}-8t+16=-\frac{64}{3}
Add -\frac{112}{3} to 16.
\left(t-4\right)^{2}=-\frac{64}{3}
Factor t^{2}-8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{-\frac{64}{3}}
Take the square root of both sides of the equation.
t-4=\frac{8\sqrt{3}i}{3} t-4=-\frac{8\sqrt{3}i}{3}
Simplify.
t=\frac{8\sqrt{3}i}{3}+4 t=-\frac{8\sqrt{3}i}{3}+4
Add 4 to both sides of the equation.