Solve for t
t=1.6
Share
Copied to clipboard
t^{2}-2.2t+1.21=\left(t-2.1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-1.1\right)^{2}.
t^{2}-2.2t+1.21=t^{2}-4.2t+4.41
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2.1\right)^{2}.
t^{2}-2.2t+1.21-t^{2}=-4.2t+4.41
Subtract t^{2} from both sides.
-2.2t+1.21=-4.2t+4.41
Combine t^{2} and -t^{2} to get 0.
-2.2t+1.21+4.2t=4.41
Add 4.2t to both sides.
2t+1.21=4.41
Combine -2.2t and 4.2t to get 2t.
2t=4.41-1.21
Subtract 1.21 from both sides.
2t=3.2
Subtract 1.21 from 4.41 to get 3.2.
t=\frac{3.2}{2}
Divide both sides by 2.
t=\frac{32}{20}
Expand \frac{3.2}{2} by multiplying both numerator and the denominator by 10.
t=\frac{8}{5}
Reduce the fraction \frac{32}{20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}