Solve for m
m=\frac{n\left(tv+3\right)}{t}
t\neq 0\text{ and }n\neq 0
Solve for n
\left\{\begin{matrix}n=\frac{mt}{tv+3}\text{, }&t\neq 0\text{ and }m\neq 0\text{ and }\left(v=0\text{ or }t\neq -\frac{3}{v}\right)\\n\neq 0\text{, }&t=-\frac{3}{v}\text{ and }m=0\text{ and }v\neq 0\end{matrix}\right.
Share
Copied to clipboard
tvn=mt+n\left(-3\right)
Multiply both sides of the equation by n.
mt+n\left(-3\right)=tvn
Swap sides so that all variable terms are on the left hand side.
mt=tvn-n\left(-3\right)
Subtract n\left(-3\right) from both sides.
mt=tvn+3n
Multiply -1 and -3 to get 3.
tm=ntv+3n
The equation is in standard form.
\frac{tm}{t}=\frac{n\left(tv+3\right)}{t}
Divide both sides by t.
m=\frac{n\left(tv+3\right)}{t}
Dividing by t undoes the multiplication by t.
tvn=mt+n\left(-3\right)
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
tvn-n\left(-3\right)=mt
Subtract n\left(-3\right) from both sides.
tvn+3n=mt
Multiply -1 and -3 to get 3.
\left(tv+3\right)n=mt
Combine all terms containing n.
\frac{\left(tv+3\right)n}{tv+3}=\frac{mt}{tv+3}
Divide both sides by tv+3.
n=\frac{mt}{tv+3}
Dividing by tv+3 undoes the multiplication by tv+3.
n=\frac{mt}{tv+3}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}