Solve for t
t = \frac{\sqrt{401} - 1}{10} \approx 1.902498439
t=\frac{-\sqrt{401}-1}{10}\approx -2.102498439
Share
Copied to clipboard
t+5t^{2}=20
Add 5t^{2} to both sides.
t+5t^{2}-20=0
Subtract 20 from both sides.
5t^{2}+t-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1±\sqrt{1^{2}-4\times 5\left(-20\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 1 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1±\sqrt{1-4\times 5\left(-20\right)}}{2\times 5}
Square 1.
t=\frac{-1±\sqrt{1-20\left(-20\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-1±\sqrt{1+400}}{2\times 5}
Multiply -20 times -20.
t=\frac{-1±\sqrt{401}}{2\times 5}
Add 1 to 400.
t=\frac{-1±\sqrt{401}}{10}
Multiply 2 times 5.
t=\frac{\sqrt{401}-1}{10}
Now solve the equation t=\frac{-1±\sqrt{401}}{10} when ± is plus. Add -1 to \sqrt{401}.
t=\frac{-\sqrt{401}-1}{10}
Now solve the equation t=\frac{-1±\sqrt{401}}{10} when ± is minus. Subtract \sqrt{401} from -1.
t=\frac{\sqrt{401}-1}{10} t=\frac{-\sqrt{401}-1}{10}
The equation is now solved.
t+5t^{2}=20
Add 5t^{2} to both sides.
5t^{2}+t=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}+t}{5}=\frac{20}{5}
Divide both sides by 5.
t^{2}+\frac{1}{5}t=\frac{20}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}+\frac{1}{5}t=4
Divide 20 by 5.
t^{2}+\frac{1}{5}t+\left(\frac{1}{10}\right)^{2}=4+\left(\frac{1}{10}\right)^{2}
Divide \frac{1}{5}, the coefficient of the x term, by 2 to get \frac{1}{10}. Then add the square of \frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{1}{5}t+\frac{1}{100}=4+\frac{1}{100}
Square \frac{1}{10} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{1}{5}t+\frac{1}{100}=\frac{401}{100}
Add 4 to \frac{1}{100}.
\left(t+\frac{1}{10}\right)^{2}=\frac{401}{100}
Factor t^{2}+\frac{1}{5}t+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{10}\right)^{2}}=\sqrt{\frac{401}{100}}
Take the square root of both sides of the equation.
t+\frac{1}{10}=\frac{\sqrt{401}}{10} t+\frac{1}{10}=-\frac{\sqrt{401}}{10}
Simplify.
t=\frac{\sqrt{401}-1}{10} t=\frac{-\sqrt{401}-1}{10}
Subtract \frac{1}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}