Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

6t^{2}-6t+2-t-8
Combine t^{2} and 5t^{2} to get 6t^{2}.
6t^{2}-7t+2-8
Combine -6t and -t to get -7t.
6t^{2}-7t-6
Subtract 8 from 2 to get -6.
factor(6t^{2}-6t+2-t-8)
Combine t^{2} and 5t^{2} to get 6t^{2}.
factor(6t^{2}-7t+2-8)
Combine -6t and -t to get -7t.
factor(6t^{2}-7t-6)
Subtract 8 from 2 to get -6.
6t^{2}-7t-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-6\right)}}{2\times 6}
Square -7.
t=\frac{-\left(-7\right)±\sqrt{49-24\left(-6\right)}}{2\times 6}
Multiply -4 times 6.
t=\frac{-\left(-7\right)±\sqrt{49+144}}{2\times 6}
Multiply -24 times -6.
t=\frac{-\left(-7\right)±\sqrt{193}}{2\times 6}
Add 49 to 144.
t=\frac{7±\sqrt{193}}{2\times 6}
The opposite of -7 is 7.
t=\frac{7±\sqrt{193}}{12}
Multiply 2 times 6.
t=\frac{\sqrt{193}+7}{12}
Now solve the equation t=\frac{7±\sqrt{193}}{12} when ± is plus. Add 7 to \sqrt{193}.
t=\frac{7-\sqrt{193}}{12}
Now solve the equation t=\frac{7±\sqrt{193}}{12} when ± is minus. Subtract \sqrt{193} from 7.
6t^{2}-7t-6=6\left(t-\frac{\sqrt{193}+7}{12}\right)\left(t-\frac{7-\sqrt{193}}{12}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+\sqrt{193}}{12} for x_{1} and \frac{7-\sqrt{193}}{12} for x_{2}.